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Programming complex embedded systems involves reasoning
through intricate system interactions along lengthy paths between
sensors, actuators, and control processors. This is a challenging,
time-consuming, and error-prone process requiring significant in-
teraction between engineers and software programmers. Further-
more, the resulting code generally lacks modularity and robustness
in the presence of failure. Model-based programming addresses
these limitations, allowing engineers to program reactive systems
by specifying high-level control strategies and by assembling com-
monsense models of the system hardware and software. In executing
a control strategy, model-based executives reason about the models
“on the fly,” to track system state, diagnose faults, and perform
reconfigurations. This paper develops the Reactive Model-Based
Programming Language (RMPL) and its executive, called Titan.
RMPL provides the features of synchronous, reactive languages,
with the added ability of reading and writing to state variables that
are hidden within the physical plant being controlled. Titan exe-
cutes an RMPL program using extensive component-based declar-
ative models of the plant to track states, analyze anomalous situ-
ations, and generate novel control sequences. Within its reactive
control loop, Titan employs propositional inference to deduce the
system’s current and desired states, and it employs model-based
reactive planning to move the plant from the current to the desired
state.

Keywords—Constraint programming, model-based autonomy,
model-based execution, model-based programming, model-based
reasoning, robotic execution, synchronous programming.

I. INTRODUCTION

Embedded systems, from automobiles to office-building
control systems, are achieving unprecedented levels of ro-

Manuscript received December 20, 2001; revised August 31, 2002.
This work was supported in part by the Defense Advanced Research
Projects Agency Model-Based Integrated Embedded Software program
under Contract F33615-00-C-1702 and in part by NASA’s Cross Enterprise
Technology Development prgram under Contract NAG2–1466

The authors are with the Space Systems and Artificial Intelligence Lab-
oratories, Massachusetts Institute of Technology, Cambridge, MA 02139
USA (e-mail: williams@mit.edu; ingham@mit.edu; chung@mit.edu; pel-
liott@mit.edu).

Digital Object Identifier 10.1109/JPROC.2002.805828

bustness by dramatically increasing their use of computation.
We envision a future with large networks of highly robust and
increasingly autonomous embedded systems. These visions
include intelligent highways that reduce congestion, coop-
erative networks of air vehicles for search and rescue, and
fleets of intelligent space probes that autonomously explore
the far reaches of the solar system.

Many of these systems will need to perform robustly
within extremely harsh and uncertain environments, or
may need to operate for years with minimal attention.
To accomplish this, these embedded systems will need to
radically reconfigure themselves in response to failures, and
then accommodate these failures during their remaining
operational lifetime. We support the rapid development
of these systems by creating embedded programming lan-
guages that are able to reason about and control underlying
hardware from engineering models. We call this approach
model-based programming.

A. Robustness in Deep Space

In the past, high levels of robustness under extreme un-
certainty was largely the realm of deep-space exploration.
Billion-dollar space systems, like the Galileo Jupiter probe,
have achieved robustness by employing sizable software de-
velopment teams and by using many operations personnel
to handle unforeseen circumstances as they arise. Efforts to
make these missions highly capable at dramatically reduced
costs have proven extremely challenging, producing notable
losses, such as the Mars Polar Lander and Mars Climate Or-
biter failures [1]. A contributor to these failures was the in-
ability of the small software team to think through the large
space of potential interactions between the embedded soft-
ware and its underlying hardware.

For example, consider the leading hypothesis for the cause
of the Mars Polar Lander failure. Mars Polar Lander used
a set of Hall effect sensors in its legs to detect touchdown.
These sensors were watched by a set of software monitors,
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which were designed to turn off the engine when triggered.
As the lander descended into the Mars atmosphere, it de-
ployed its legs. At this point it is most likely that the force of
deployment produced a noise spike on the leg sensors, which
was latched by the software monitors. The lander continued
to descend, using a laser altimeter to detect distance to the
surface. At an altitude of approximately 40 m, the lander
began polling its leg monitors to determine touchdown. It
would have immediately read the latched noise spike and
shut down its engine prematurely, resulting in the spacecraft
plummeting to the surface from 40 m [2].

Suppose for a moment that the lander had been piloted by a
human. The pilot would have received one altimeter reading
of 40 m elevation, and a split second later a reading of touch-
down from the leg sensors. It seems unlikely that the pilot
would immediately respond by shutting down the engine,
given how these observations defy our common sense about
physics. Rather, the pilot would consider that a sensor failure
was most likely, gather additional information to determine
the correct altitude, and choose a conservative approach in
the presence of uncertainty.

Of course, such embedded systems cannot be piloted by
humans; they must be preprogrammed. However, the space
of potential failures and their interactions with the embedded
software is far too large for programmers to successfully enu-
merate, and correctly encode, within a traditional program-
ming language.

Our objective is to support future programmers with
embedded languages that avoid commonsense mistakes,
by automatically reasoning from hardware models. Our
solution to this challenge has two parts. First, we are creating
increasingly intelligent embedded systems that automati-
cally diagnose and plan courses of action at reactive time
scales, based on models of themselves and their environment
[3]–[7]. This paradigm, calledmodel-based autonomy, has
been demonstrated in space on the NASA Deep Space
One (DS-1) probe [8], and on several subsequent space
systems [9], [10]. Second, we elevate the level at which an
engineer programs through a language, called theReactive
Model-Based Programming Language(RMPL), which
enables the programmer to tap into and guide the reasoning
methods of model-based autonomy. This language allows
the programmer to delegate, to the language’s compiler
and run-time execution kernel, tasks involving reasoning
through system interactions, such as low-level commanding,
monitoring, diagnosis, and repair. The model-based execu-
tion kernel for RMPL is calledTitan.

B. Model-Based Programming

Engineers like to reason about embedded systems in terms
of state evolutions. However, embedded programming lan-
guages, such as Esterel [11] and Statecharts [12], interact
with a physical plant by reading sensors and setting con-
trol variables [Fig. 1 (left)]. It is then the programmer’s re-
sponsibility to perform the mapping between intended state
and the sensors and actuators. This mapping involves rea-
soning through a complex set of interactions under a range
of possible failure situations. The complexity of the interac-

Fig. 1 Model of interaction with the physical plant for traditional
embedded languages (left) and model-based programming (right).

tions and the large number of possible scenarios makes this
an error-prone process.

A model-based programming language is similar to re-
active embedded languages like Esterel, with the key dif-
ference that it interacts directly with the plant state [Fig. 1,
right]. This is accomplished by allowing the programmer to
read or write “hidden” state variables in the plant, that is,
states that are not directly observable or controllable. It is
then the responsibility of the language’s execution kernel to
map between hidden states and the plant sensors and con-
trol variables. This mapping is performed automatically by
employing a deductive controller that reasons from a com-
monsense plant model.

A model-based program is composed of two components.
The first is acontrol program,which uses standard program-
ming constructs to codify specifications of desired system
state evolution. In addition, to execute the control program,
the execution kernel needs a model of the system it must con-
trol. Hence, the second component is aplant model, which
captures the physical plant’s nominal behavior and common
failure modes. This model unifies constraints, concurrency,
and Markov processes.

C. Model-Based Execution

A model-based program is executed by automatically
generating a control sequence that moves the physical plant
to the states specified by the program (see Fig. 2). We
call these specified statesconfiguration goals. Program
execution is achieved using amodel-based executive, such
as Titan, which repeatedly generates the next configuration
goal, and a sequence of control actions that achieve this
goal, based on knowledge of the current plant state and plant
model. The model-based executive continually estimates
the most likely state of the plant from sensor information
and the plant model. This information allows the executive
to confirm the successful execution of commands and the
achievement of configuration goals, and to diagnose failures.

A model-based executive continually tries to transition the
plant toward a state that satisfies the configuration goals,
while maximizing some reward metric. When the plant strays
from the specified goals due to failures, the executive ana-
lyzes sensor data to identify the current state of the plant, and
then moves the plant to a new state that, once again, achieves
the desired goals. The executive is reactive in the sense that it
responds immediately to changes in goals and to failures; that
is, each control action is incrementally generated using the
new observations and configuration goals provided in each
state.
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Fig. 2 Architecture for a model-based executive.

The Titan model-based executive consists of two compo-
nents, acontrol sequencerand adeductive controller. The
control sequencer is responsible for generating a sequence
of configuration goals, using the control program and plant
state estimates. Each configuration goal specifies an abstract
state for the plant to achieve. The deductive controller is re-
sponsible for estimating the plant’s most likely current state
based on observations from the plant (mode estimation), and
for issuing commands to move the plant through a sequence
of states that achieve the configuration goals (mode reconfig-
uration).

D. Outline

In this paper we develop RMPL and its corresponding ex-
ecutive,Titan. Section II illustrates model-based program-
ming in detail on a simple example. Section III specifies
the formal semantics for a model-based program. Section IV
introduces the constructs of RMPL required for specifying
control behavior. The remaining sections develop Titan. Sec-
tion V describes the control sequencer, which translates the
RMPL control program into a sequence of state configura-
tion goals, based on the plant’s estimated state trajectory.
Section VI describes the deductive controller, which uses a
commonsense plant model to estimate the state of the system
and generate control actions that achieve the state configura-
tion goals provided by the sequencer. Section VII concludes
the paper with a discussion of related work.

II. A M ODEL-BASED PROGRAMMING EXAMPLE

Model-based programming enables a programmer to focus
on specifying the desired state evolutions of the system. For
example, consider the task of inserting a spacecraft into orbit
around a planet. Our spacecraft includes a science camera
and two identical redundant engines (Engines A and B), as
shown in Fig. 3. An engineer thinks about this maneuver in
terms of state trajectories:

Heat up both engines (called standby mode). Meanwhile,
turn the camera off, in order to avoid plume contamina-

Fig. 3 Simple spacecraft for the orbital insertion scenario. Initial
state (left) and goal state (right) are depicted.

tion. When both are accomplished, thrust one of the two
engines, using the other engine as backup in case of pri-
mary engine failure.
This specification is far simpler than a control program

that must turn on heaters and valve drivers, open valves and
interpret sensor readings for the engines shown in the figure.
Thinking in terms of more abstract hidden states makes the
task of writing the control program much easier and avoids
the error-prone process of reasoning through low-level
system interactions. In addition, it gives the program’s
execution kernel the latitude to respond to novel failures
as they arise. This is essential for achieving high levels of
robustness.

As an example, consider the model-based program
corresponding to the previously described specification for
spacecraft orbital insertion. The dual main engine system
(see Fig. 3) consists of two propellant tanks, two main
engines, and redundant valves. The system offers a range of
configurations for establishing propellant paths to a main
engine. When the propellants combine within the engine,
they produce thrust. The flight computer controls the engine
and camera by sending commands. Sensors include an
accelerometer, to confirm engine operation, and a camera
shutter position sensor, to confirm camera operation.
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We start by specifying the two components of a model-
based program for orbital insertion: the control program and
plant model. We then describe the execution of the program
under nominal and failure situations.

A. Control Program

The RMPL control program, shown in Fig. 4, encodes the
informal specification we gave previously as a set of state tra-
jectories. The specific RMPL constructs used in the program
are introduced in Section IV. Recall that to perform orbital
insertion, one of the two engines must be fired. We start by
concurrently placing the two engines in the standby state and
by shutting off the camera. This is performed by lines 3–5,
where commas at the end of each line denote parallel compo-
sition. We then fire an engine, choosing to use Engine A as
the primary engine (lines 6–9) and Engine B as a backup, in
the event that Engine A fails to fire correctly (lines 10–11).
Engine A starts trying to fire as soon as it achieves standby
and the camera is off (line 7), but aborts if at any time En-
gine A is found to be in a failure state (line 9). Engine B starts
trying to fire only if Engine A has failed, B is in standby, and
the camera is off (line 10).

Several features of this control program reinforce our ear-
lier points. First, the program is stated in terms of state as-
signments to the engines and camera, such as “EngineB =
Firing.” Second, these state assignments appear both as as-
sertions and as execution conditions. For example, in lines
6–9, “EngineA = Firing” appears in an assertion (line 8),
while “EngineA = Standby,” “Camera = Off,” and “EngineA
= Failed” appear in execution conditions (lines 7 and 9).
Third, none of these state assignments are directly observable
or controllable, only shutter position and acceleration may be
directly sensed, and only the flight computer command may
be directly set. Finally, by referring to hidden states directly,
the RMPL program is far simpler than a corresponding pro-
gram that operates on sensed and controlled variables. The
added complexity of the latter program is due to the need to
fuse sensor information and generate command sequences
under a large space of possible operation and fault scenarios.

B. Plant Model

The plant model is used by a model-based executive to
map queried and asserted states in the control program to
sensed variables and control sequences, respectively, in the
physical plant. The plant model is built from a set of com-
ponent models. Each component is represented by a set of
component modes, a set of constraints defining the behavior
within each mode, and a set of probabilistic transitions be-
tween modes. The component automata operate concurrently
and synchronously. In Section III, we describe the semantics
of plant models in terms of partially observable Markov de-
cision processes.

For the orbital insertion example, we can model the space-
craft abstractly as a three-component system (two engines
and a camera) by supplying the models depicted graphically
in Fig. 5. Nominally, an engine can be in one of three modes:

, , or . The behavior within each of these

Fig. 4 RMPL control program for the orbital insertion scenario.

modes is described by a set of constraints on plant variables,
namely, and . In Fig. 5, these constraints are
specified in boxes next to their respective modes. The engine
also has a mode, capturing any off-nominal behavior.
We entertain the possibility that the engine may fail in a way
never seen before, by specifying no constraints for the en-
gine’s behavior in the mode. This approach, called
constraint suspension[13], is common to most approaches
to model-based diagnosis.

Models include commanded and uncommanded tran-
sitions, both of which are probabilistic. For example, the
engine has uncommanded transitions from , ,
and to . The transitions have a 1% probability,
and are shown in the figure as arcs labeled 0.01. Transitions
between nominal modes are triggered on commands, and
occur with probability 99%.

C. Executing the Model-Based Program

When the orbital insertion control program is executed,
the control sequencer starts by generating a configuration
goal consisting of the conjunction of three state variable
assignments: “EngineA = Standby,” “EngineB = Standby,”
and “Camera = Off” (lines 3–5, Fig. 4). To determine how
to achieve this goal, the deductive controller considers
the latest estimate of the state of the plant. For example,
suppose the deductive controller determines from its sensor
measurements and previous commands that the two engines
are already in standby, but the camera is on. The deductive
controller deduces from the model that it should send a
command to the plant to turn the camera off. After exe-
cuting this command, it uses its shutter position sensor to
confirm that the camera is off. With “Camera = Off” and
“EngineA = Standby,” the control sequencer advances to the
configuration goal of “EngineA = Firing” (line 8, Fig. 4).
The deductive controller identifies an appropriate setting of
valve states that achieves this behavior, then it sends out the
appropriate commands.

In the process of achieving goal “EngineA = Firing,”
assume that a failure occurs: an inlet valve to Engine A
suddenly sticks closed. Given various sensor measurements
(e.g., flow and pressure measurements throughout the
propulsion subsystem), the deductive controller identifies
the stuck valve as the most likely source of failure. It then
tries to execute an alternative control sequence for achieving
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Fig. 5 State transition models for a simplified spacecraft. The probabilities on nominal transitions
are omitted for clarity.

the configuration goal, for example, by repairing the valve.
Presume that the valve is not repairable; Titan diagnoses
that “EngineA = Failed.” The control program specifies a
configuration goal of “EngineB = Firing” as a backup (lines
10–11, Fig. 4), which is issued by the control sequencer to
the deductive controller.

III. M ODEL-BASED PROGRAM EXECUTION SEMANTICS

Next, we define the execution of a model-based program
in terms of legal state evolutions of a physical plant, and de-
fine the functions of the control sequencer and deductive con-
troller (see Fig. 2).

A. Plant Model

A plant is modeled as apartially observable Markov de-
cision process(POMDP) .

is a set ofvariables, each ranging over a finite domain.
is partitioned intostate variables , control variables ,
andobservable variables . A full assignment is defined
as a set consisting of an assignment to each variable in.
is the set of allfeasiblefull assignments over . A state
is defined as an assignment to each variable in. The set

, the projection of on variables in , is the set of all
feasible states. Anobservationof the plant, , is defined as
an assignment to each variable in. A control action, , is
defined as an assignment to each variable in.

is a finite set oftransitions. Each transition is
a function , that is, is the state obtained
by applying transition function to any feasible full assign-
ment . The transition function models the system’s
nominal behavior, while all other transitions model failures.

associates with each transition functiona probability
. is the probability that the plant has initial state

. The reward for being in state is , and the proba-
bility of observing in state is .

A plant trajectoryis a (finite or infinite) sequence of fea-
sible states [ ], such that for each there is a
feasible assignment that agrees with on assign-
ments to variables in , and , for some

. A trajectory that involves only the nominal transition
is called anominal trajectory. A simpletrajectory does

not repeat any state.
The space of possible state trajectories for a plant can be

visualized using aTrellis diagram, which enumerates all pos-
sible states at each time step and all transitions between states
at adjacent times [see Fig. 6(a)].

B. Model-Based Program Execution

A model-based program consists of a plant model, de-
scribed previously, and a control program, described as a
deterministic automaton .
is the set ofprogram locations, where is the pro-
gram’s initial location. A program location represents the
“state” of the program’s execution at any given time. Tran-
sitions between locations are conditioned on plant states

of ; that is, is a function : .
Each location has a correspondingconfiguration
goal , which is the set of legal plant goal states
associated with location.

A legal executionof a model-based program is a trajectory
of feasible plant state estimates, [ ] of , and lo-
cations [ ] of such that: 1) is a valid initial
plant state, that is, ; 2) is consistent with
the observations and the plant model, that is, for each,
there is a of that agrees with and , on
the corresponding subsets of variables; 3) is the initial
program location ; 4) represents a legal con-
trol program transition, that is, ; and
5) if plant state is the result of a nominal plant transi-
tion from , that is, , then either
is the maximum-reward state in , or is
the prefix of a simple nominal plant trajectory that ends in
the maximum-reward state in .
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(a)

(b)

(c)

Fig. 6 (a) A Trellis diagram depicting the system’s possible state trajectories. (b) Mode estimation
tracks a set of trajectories through the diagram, and selects the most likely state as its estimate
for ŝ . (c) Mode reconfiguration chooses a path through the diagram along nominal transitions,
terminating at the goal states .

C. Model-Based Executive

A model-based program is executed by amodel-based
executive. We define a model-based executive as a high-level
control sequencer, coupled to a low-leveldeductive con-
troller.

A control sequencer takes, as input, a control program,
and a sequence [ ] of plant state estimates. It gen-
erates a sequence [ ] of configuration goals.

A deductive controller takes, as input, the plant model
, a sequence of configuration goals [ ], and a

sequence of observations [ ]. It generates a se-
quence of most likely plant state estimates [ ]
and a sequence of control actions [ ].

The sequence of state estimates is generated by a process
calledmode estimation(ME). ME is an online algorithm for

tracking the most likely states that are consistent with the
plant model, the sequence of observations and the control ac-
tions. ME is framed as an instance of Hidden Markov Model
belief state update, which computes the probability associ-
ated with being in each state at time , according to
the following equations:

where is defined as the probability that tran-
sitions from to state , computed as the sum of over
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all transition functions that map to state . The prior
probability is conditioned on all observations up
to , while the posterior probability is also con-
ditioned on the latest observation .

Belief state update associates a probability to each state
in the Trellis diagram. For mode estimation, the tracked state
with the highest belief state probability is selected as the most
likely state , as shown in Fig. 6(b).

The sequence of control actions is generated by a process
calledmode reconfiguration(MR). MR takes as input a con-
figuration goal and the most likely current state from
ME, and it returns a series of commands that progress the
plant toward a maximum-reward goal state that achieves.
MR can be thought of as picking a simple path through the
Trellis diagram along nominal transitions that leads to the
goal state, as shown in Fig. 6(c).

MR computes a goal state associated with configura-
tion goal , and a control action , such that: 1) is
the state that entails the configuration goal , while max-
imizing reward ; 2) is reachable from through a
sequence of nominal transitions of; and 3) is a con-
trol action that transitions the plant state from to ,
where either or is the prefix of a
simple nominal state trajectory that leads to state.

Just as concurrent constraint programming offers a family
of languages, each characterized by a choice of constraint
system, model-based programming defines a family of lan-
guages, each characterized by the choice of the underlying
plant modeling formalism. In the following three sections of
the paper, we define one particularly powerful instance of a
model-based programming language and its corresponding
executive. The practical importance of this instance has been
demonstrated through deployments on a wide range of ap-
plications from the automotive and aerospace domains [14].
In the next section, we define RMPL. In the subsequent two
sections, we present in more detail the computational models
and algorithms used by Titan’s control sequencer and deduc-
tive controller implementations.

IV. THE REACTIVE MODEL-BASED PROGRAMMING

LANGUAGE

In this section we introduce RMPL, by first introducing its
underlying constraint system, and then developing constructs
for writing control programs.

A. Constraint System: Propositional State Logic

A constraint system ( ) is a set of tokens , closed
under conjunction, together with an entailment relation

. The relation satisfies the standard rules for con-
junction (identity, elimination, cut, and introduction), as
defined in [15]. RMPL currently supportspropositional state
logic as its constraint system. In propositional state logic,
a propositionis, in general, an assignment ( ), where
variable ranges over a finite domain . A proposition
can have a truth assignment of true or false. Propositions are
composed into formula using the standard logical connec-
tives: and ( ), or ( ), and not ( ). The constantsTrue and

Falseare also valid constraints. A constraint isentailed if
it is implied by the conjunction of the plant model and the
most likely current state of the physical plant; otherwise, it
is not entailed. We denote entailment by simply stating the
constraint. Nonentailment is denoted by using an overbar.
Note that nonentailment of constraint(denoted ) is not
equivalent to entailment of the negation of( ); the cur-
rent knowledge of plant state may not implyto be true or
false.

In specifying an RMPL control program, the objective is
to specify the desired behavior of the plant, by stating con-
straints that, when made true, will cause the plant to follow a
desired state trajectory. State assertions are specified as con-
straints on plant state variables that should be made true.
RMPL’s model of interaction is in contrast to Esterel [11]
and the Timed Concurrent Constraint (TCC) programming
language [16], which both interact with the program memory,
sensors, and control variables, but not with the plant state. Es-
terel interacts by emitting and detecting signals, while TCC
interacts by telling and asking constraints on program vari-
ables. In contrast, RMPL control programsaskconstraints on
plant state variables, and request that specified constraints on
state variables beachieved(as opposed totell, which asserts
that a constraintis true). State assertions in RMPL control
programs are treated asachieveoperations, while state con-
dition tests areaskoperations.1

B. RMPL Control Programs

To motivate RMPL’s constructs we consider a more com-
plex example, taken from the NASA DS-1 probe. DS-1 uses
an ion propulsion engine, which thrusts almost continuously
throughout the mission. Once a week the engine is turned off,
in order for DS-1 to perform a course correction, calledop-
tical navigation. The RMPL control program for optical nav-
igation (OpNav) is shown in Fig. 7. OpNav works by taking
pictures of three asteroids and by using the difference be-
tween actual and projected locations to determine the course
error. OpNav first shuts down the ion engine and prepares its
camera concurrently. It then uses attitude control thrusters to
turn toward each of three asteroids, uses the camera to take a
picture of each, and stores each picture in memory. The three
images are then read and processed, and a course correction
is computed. One of the more subtle failures that OpNav may
experience is an undetected fault in a navigation image. If the
camera generates a faulty image, it gets stored in memory.
After all three images are stored, the images are processed,
and only then is the problem detected.

1) Desiderata: OpNav highlights five design features
for RMPL. First, the program exploits full concurrency, by
intermingling sequential and parallel threads of execution.
For example, the camera is turned on and the engine is set
to standby in parallel (lines 3–4), while pictures are taken
serially (lines 7–9). Second, it involves conditional execution,
such as switching to standby if the engine is firing (line 4).

1Note that, although RMPL provides the flexibility of asserting any form
of constraint on plant variables, the current implementation of the Titan
model-based executive handles only assertions of constraints that are con-
junctions of state variable assignments.
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Fig. 7 RMPL control program for the DS-1 optical navigation
procedure. In RMPL programs, comma delimits parallel processes
and semicolon delimits sequential processes.

Third, it involves iteration; for example, “when (Engine =
Off Engine = Standby) Camera = Ondonext … ” (line
6) says to iteratively test until the engine is either off or in
standby and the camera is on, and then to proceed. Fourth, the
program involves preemption; for example, “do… watching
SnapStoreStatus = Failed” (lines 5–15) says to perfom a
task, but to interrupt it as soon as the watched condition
(SnapStoreStatus = Failed) is entailed. Procedures used by
OpNav, such as TakePicture, exploit similar features. These
four features are common to most synchronous reactive
programming languages. As highlighted in the preceding sec-
tions, the fifth and defining feature of RMPL is the ability to
reference hidden states of the physical plant within assertions
and guards, such as “if Engine = Firingthennext Engine =
Standby” (line 4), where constraints on the hidden state of the
engine are used in both a condition check and an assertion.

RMPL is an object-oriented, constraint-based language in
a style similar to Java. We develop RMPL by first introducing

a small set of primitives for constructing model-based control
programs. These primitives are fully orthogonal, that is, they
may be nested and combined arbitrarily. The RMPL primi-
tives are closely related to the TCC programming language
[16]. To make the language usable, we define on top of these
primitives a variety of derived combinators, such as those
used in the orbital insertion and optical navigation control
programs (see Fig. 4 and 7).

In the following discussion, we use lowercase letters,
like , to denote constraints, and uppercase letters, like

and , to denote well-formed RMPL expressions. An
RMPL expression is specified by the following grammar in
Backus-Naur Form:

expression assertion combinator

prgm invocation

combinator

prgm invocation programname(arglist)

where an assertion is anachieveconstraint, made up of
conjunctions of propositions. Note that we allow procedure
calls specified as RMPL program invocations, in which
programname corresponds to another specified control
program. The arglist used in a program invocation corre-
sponds to a (possibly empty) list of parameters defined for
the program. Within the invoked procedure, each parameter
is replaced by the appropriate argument in arglist. For
example, the OpNav control program calls the procedure
TakePicture three times, each time with a different argument
(Asteroid1, Asteroid2, and Asteroid3). With each invoca-
tion of TakePicture, the argument replaces the parameter
“target,” resulting in a specific Attitude variable assertion
(Asteroid1, Asteroid2, and Asteroid3 are all members in the
domain of the Attitude state variable).

2) Primitive Combinators:RMPL provides standard
primitive constructs for conditional branching, preemption,
iteration, and concurrent and sequential composition. In
general, RMPL constructs are conditioned on the current
state of the physical plant, and they act on the plant state in
the next time instant.

: This expression asserts that the plant should progress
toward a state that entails constraint. is anachievecon-
straint on variables of the physical plant. This is the basic
construct for affecting the plant’s hidden state.

maintaining : This expression executes expres-
sion , while ensuring that constraint is maintained true
throughout. is anaskconstraint on variables of the physical
plant. If is not entailed at any instant, then the execution
thread terminates immediately. This is the basic construct
for preemption by nonentailment.

do watching : This expression executes expression,
but if constraint becomes entailed by the most likely plant
state, at any instant, it terminates execution ofin that in-
stant. is anaskconstraint on variables of the physical plant.
This is the basic construct for preemption by entailment.
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if thennext : This expression starts executing RMPL
expression in the next instant, if the most likely current
plant state entails. is anaskconstraint on the variables of
the physical plant. This is the basic construct for condition-
ally branching upon entailment of the plant’s hidden state.

unless thennext : This expression starts executing
RMPL expression in the next instant if the current theory
doesnotentail . is anaskconstraint on the variables of the
physical plant. This is the basic construct for conditionally
branching upon nonentailment of the plant’s hidden state.

, : This expression concurrently executes RMPL ex-
pressions and , starting in the current instant. It is the
basic construct for forking processes.

; : This is the sequential composition of RMPL expres-
sions and . It performs until is finished, then it starts

.
always : This expression starts expressionat each in-

stant of time, for all time. This is the only iteration primitive
needed, since finite iteration can be achieved by using a pre-
emption construct to terminate analways.

The previously described primitive combinators cover the
five desired design features. We can use them to implement
a rich set of derived combinators, some of which are used
in the orbital insertion and optical navigation examples. For
example, the derived constructwhen donext is a tempo-
rally extended version ofif thennext . It waits until con-
straint is entailed by the most likely plant state, then starts
executing in the next instant. The set of derived combina-
tors is included as an Appendix to this paper.

The primitive and derived RMPL constructs are used to en-
code control programs. This subset is sufficient to implement
most of the control constructs of the Esterel language [11].
A mapping between key Esterel constructs and analogous ex-
pressions in RMPL was presented in [5]. Note that RMPL can
also be used to encode the probabilistic transition models cap-
turing the behavior of the plant components. The additional
constructs required to encode such models are defined in [17].
The plant model is further defined in Section VI.

V. CONTROL SEQUENCER

The RMPL control program is executed by the control se-
quencer. Executing a control program involves compiling it
to a variant of hierarchical automata, calledhierarchical con-
straint automata (HCA), and then executing the automata in
coordination with the deductive controller. In this section we
define HCA as a specific instance of the deterministic control
program automaton presented in Section III. In addition, we
discuss the compilation from RMPL to HCA, and we present
the execution algorithm used by Titan’s control sequencer.

A. Hierarchical Constraint Automata

To efficiently execute RMPL programs, we translate each
of the primitive combinators, introduced in the previous sec-
tion, into an HCA. In the following we call the “states” of an
HCA locations, to avoid confusion with the physical plant
state. The overall state of the program at any instant of time
corresponds to a set of “marked” HCA locations. An HCA

has five key attributes. First, it composes sets of concur-
rently operating automata. Second, each location is labeled
with a constraint, called agoal constraint, which the physical
plant must immediately begin moving toward, whenever the
automaton marks that location. Third, each location is also
labeled with a constraint, called amaintenance constraint,
which must hold for that location to remain marked. Fourth,
automata are arranged in a hierarchy—a location of an au-
tomaton may itself be an automaton, which is invoked when
marked by its parent. This enables the initiation and termina-
tion of more complex concurrent and sequential behaviors.
Finally, each transition may have multiple target locations,
allowing an automaton to have several locations marked si-
multaneously. This enables a compact representation for it-
erative behaviors, like RMPL’salwaysconstruct.

Hierarchical encodings form the basis for embedded reac-
tive languages like Esterel [11] and State Charts [12]. A dis-
tinctive feature of an HCA is its use of constraints on plant
state, in the form of goal and maintenance constraints. We
elaborate on this point once we introduce HCA.

A hierarchical constraint automaton is a tuple
, where:

1) is a set oflocations, partitioned intoprimitive loca-
tions andcomposite locations . Each composite
location corresponds to another hierarchical constraint
automaton.Wedefine thesetofsubautomataof as the
set of locations of , and locations that are descendants
of thecomposite locationsof, that is, thesubautomata
of are given by the following recursive function:

subaut subaut

2) is the set of ’s start locations(also called the
initial marking of ).

3) is the set of plant state variables, with each
ranging over a finite domain . denotes the
set of all finite-domain constraints over variables in,
and denotes the set of finite-domainachieve
constraints over , where anachieveconstraint is a
conjunction of state variable assignments.

4) : associates with each primitive lo-
cation a finite-domain constraint that
the plant progresses toward wheneveris marked.

is called thegoal constraintof . Goal con-
straints may be thought of as abstract set points,
representing a set of states that the plant must evolve
toward when is marked.

5) : , associates with each location
a finite-domain constraint that must hold at the
current instant for to be marked. is called the
maintenance constraintof . Maintenance constraints

may be viewed as representing monitored con-
straints that must be maintained in order for execu-
tion to progress toward achieving any goal constraints
specified within .

6) : 2 associates with each location
a transition function . Each : 2
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Fig. 8 HCA representation of the RMPL always construct.

specifies asetof locations to be marked at time ,
given appropriate assignments toat time .

At any instant , the state of an HCA is the set of marked
locations , called amarking. denotes the set of
possible markings, where 2 .

As an example of an HCA, consider the RMPL combi-
natoralways , which maps to the graphical representation
in Fig. 8. This automaton results in the start locations of
being marked at each time instant. The locations,, of the
automaton consist of primitive location , drawn to the
left as a circle, and composite location, drawn to the right
as a rectangle. The start locationsare and , and are
indicated by two short arrows.

In the graphical representation of HCA, primitive loca-
tions are represented as circles, while composite locations are
represented as rectangles. Constraints are indicated by low-
ercase letters, such as, , or . Goal and maintenance con-
straints are written within the corresponding locations, with
maintenance constraints preceded by the keyword “main-
tain.” Maintenance constraints can be of the form or ,
for some . For convenience, in our diagrams we use

to denote the constraint , and to denote the constraint
. Maintenance constraints associated with composite lo-

cations are assumed to apply to all subautomata within the
composite location. When either a goal or a maintenance
constraint is not specified, it is taken to be implicitlyTrue.
In the previous example, implicitly has goal and main-
tenance constraintsTrue; other constraints may be specified
within .

Transitions are conditioned on constraints that must be sat-
isfied by the conjunction of the plant model and the most
likely estimated state of the plant. For each location, we
represent the transition function as a set of transition
pairs ( ), where , and is a label (also known as
a guard condition) of the form (denoted ) or (de-
noted ), for some . This corresponds to the tradi-
tional representation of transitions as labeled arcs in a graph,
where and are the source and target of an arc with label.
Again, if no label is indicated, it is implicitlyTrue. The HCA
representation ofTrue always in Fig. 8 has two transitions,
one from to itself and one from to . Both these
transitions’ labels are implicitlyTrue.

Our HCA encoding has four properties that distinguish it
from the hierarchical automata employed by other reactive
embedded languages [11], [12], [18]. First, multiple transi-
tions may be simultaneously traversed. This permits a com-
pact encoding of the state of the automaton as a set of mark-
ings. Second, transitions are conditioned on what can be de-
duced from the estimated plant state, not just what is explic-
itly observed or assigned. This provides a simple, but gen-
eral, mechanism for reasoning about the plant’s hidden state.

Third, transitions can be enabled based on lack of informa-
tion, that is, nonentailment of a constraint. This allows de-
fault executions to be pursued in the absence of better infor-
mation, enabling advanced preemption constructs. Finally,
locations assert goal constraints on the plant state. This al-
lows the hidden state of the plant to be controlled directly.

It should be noted that two extensions to HCA have been
presented elsewhere. In [17], we consider the problem of the
state estimation of probabilistic variants of HCA. In [7], we
consider the execution of model-based programs encoded as
timed variants of HCA that allow for representation of non-
deterministic choice.

B. Executing HCA

Informally, execution of an HCA proceeds as follows. The
control sequencer begins with a marked subset of the HCA’s
locations and an estimate of the current plant state from mode
estimation. It then creates a set consisting of each marked lo-
cation whose maintenance constraint is satisfied by the cur-
rent estimated state. Next, it conjoins all goal constraints of
this set to produce aconfiguration goal. A configuration goal
represents a set of states, such that the plant must progress
toward one of these states, called thegoal state, which has
the greatest reward.2 This configuration goal is then passed
to mode reconfiguration, which executes a single command
that makes progress toward achieving the goal. Next, the se-
quencer receives an update of the plant state from mode es-
timation. Based on this new state information, the HCA ad-
vances to a new marking, by taking all enabled transitions
from marked primitive locations whose goal constraints are
achieved or whose maintenance constraints have been vio-
lated, and from marked composite locations that no longer
contain any marked subautomata. Finally, the cycle repeats.

More precisely, to execute an HCA , the control
sequencer starts with an estimate of the current state of
the plant, . It initializes using , a function
that marks the start locations of and all their starting
subautomata. It then repeatedly steps automatonusing
the function Step , which maps the current state estimate
and marking to a next marking and configuration goal.
The functions and Step are defined later. Execu-
tion “completes” when no marks remain, since the empty
marking is a fixed point.

Given an HCA to be initialized, creates afull
marking, by recursively marking the start locations ofand
all starting subautomata of the following start locations:

For example, applying to automatonalways returns
the set consisting ofalways , , and any start loca-
tions contained within .

Step transitions an automaton from the current full
marking to the next full marking, based on the current

2We define “progress” as taking an action that is part of a sequence of
actions that leads to the goal state.

WILLIAMS et al.: MODEL-BASED PROGRAMMING OF INTELLIGENT EMBEDDED SYSTEMS AND ROBOTIC SPACE EXPLORERS 221



Fig. 9 Step algorithm.

state estimate, and generates a new configuration goal. The
Step algorithm is given in Fig. 9.

A trajectory of a hierarchical constraint automaton
, given estimated plant state sequence [ ],

is a sequence of markings [ ] and con-
figuration goals [ ] such that: 1) is
the initial marking ; and 2) for each ,

Step .
’s execution completes at time if is the empty

marking, and there is no such that is the empty
marking.

As an example, applying Step to the initial marking of
always causes to transition to and back to ,
and for to transition internally. ’s transition back to it-
self ensures that it always remains marked. Its transition to
puts a new mark on , initializing the starting subautomata
of at each time step. The ability of an HCA to have mul-
tiple locations marked simultaneously is key to the compact-
ness of this novel encoding, by avoiding the need for explicit
copies of .

This example does not demonstrate the interaction with the
physical plant through goal and maintenance constraints. We
demonstrate this by revisiting the orbital insertion example in
Section V-D.

C. Compiling RMPL to HCA

Each RMPL construct maps to an HCA as shown in
Fig. 10. The derived combinators are definable in terms of
the primitives, but for efficiency we map them directly to
HCA as well. As before, lowercase letters denote constraints
expressed in propositional state logic. Uppercase letters
denote well-formed RMPL expressions, each of which maps
to an HCA.

Fig. 10 Corresponding HCA for various RMPL constructs.

To illustrate compilation, consider the RMPL code for or-
bital insertion, shown earlier in Fig. 4. The RMPL compiler
converts this to the corresponding HCA, shown in Fig. 11.3

D. Example: Executing the Orbital Insertion Control
Program

The control sequencer interacts tightly with the mode es-
timation and mode reconfiguration capabilities of the deduc-
tive controller. As a practical example, we consider a nom-
inal (i.e., failure-free) execution trace for the orbital inser-
tion scenario. Markings are represented in the following fig-
ures by filling in the corresponding primitive locations. Any
composite location with marked subautomata is considered
marked. Locations are numbered 1–9 in the figures for refer-
ence.

Initial State: Initially, all start locations are marked (lo-
cations 1, 2, 3, 4, 5, 6, and 8 in Fig. 12). We assume mode
estimation provides the following initial plant state estimate:
{EngineA = Off, EngineB = Off, Camera = On}.

Execution will continue as long as the maintenance
constraint on automaton 1, EngineA = Firing
EngineB = Firing, remains true. In other words, ex-
ecution of automaton 1 will terminate as soon as
EngineA = Firing EngineB = Firing is entailed.

Similarly, execution of automaton 5 will terminate if ever
EngineA = Failed is entailed.

First Step: Since none of the maintenance constraints
are violated for the initial state estimate, all start loca-

3Note that the compilation process takes place offline. Only the resulting
HCA model needs to be loaded into the embedded processor for eventual
execution.
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Fig. 11 HCA model for the orbital insertion scenario.

Fig. 12 Initial marking of the HCA for orbital insertion.

tions remain marked. The goal constraints asserted by
the start locations consist of the following state assign-
ments: EngineA = Standby, EngineB = Standby, and
Camera = Off (from states 2, 3, and 4, respectively). These

state assignments are conjoined into a configuration goal,
and passed to mode reconfiguration. Mode reconfiguration
then issues the first command in a command sequence that
achieves the configuration goal [e.g.,Cmd = CamOff ].

In this example, mode estimation confirms that
Camera = Off is achieved with a one-step operation,

by observing that the shutter position sensor reads closed.

Locations 2 and 3, which assertEngineA = Standbyand
EngineB = Standby, remain marked in the next execution

step, because these two configuration goals have not yet
been achieved. SinceCamera = Off has been achieved
and there are no specified transitions from location 4, this
thread of execution terminates. Marked locations 6 and 8,
which correspond to “when … donext …” expressions in
the RMPL control program, both remain marked in the next
execution step, since the only enabled transitions from these
locations are self-transitions. The next execution step’s
marking is shown in Fig. 13.
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Fig. 13 Marking of the orbital insertion HCA after the first transition.

Second Step:The maintenance constraints corresponding
to nonentailment ofEngineA = Failedon automaton 5, and
nonentailment of EngineA = Firing EngineB = Firing
on automaton 1, still hold for the current state esti-
mate, so all marked locations remain marked. Next, the
goal constraints of the marked locations are collected,
EngineA = Standby EngineB = Standby, and passed

as a configuration goal to mode reconfiguration. Mode
reconfiguration issues the first command in the sequence for
achieving EngineA = Standbyand EngineB = Standby.

For the purposes of this example, we assume that a single
command is required to set both engines to standby, and
that this action is successfully performed. Consequently,
mode estimation indicates that the new state estimate
includes EngineA = Standby and EngineB = Standby.
This results in termination of the two execution threads
corresponding to these goal constraints, at locations 2 and
3. In addition, for marked location 6, the transition labeled
with condition EngineA = Standby Camera = Off is
enabled, and hence traversed to location 7. Finally, location
8 remains marked.

Thus, after taking the enabled transitions, only two prim-
itive locations are marked, 7 and 8. This new marking is
shown in Fig. 14.

Third Step: Since none of the maintenance constraints are
violated for the current state estimate, all marked locations
remain marked. Marked location 7 asserts the goal constraint
EngineA = Firing, which is passed to mode reconfigura-

tion as the configuration goal. Mode reconfiguration deter-
mines that the engine fires by opening the valves that supply
fuel and oxidizer, and issues the first command in a sequence
that achieves this configuration.

We assume that this first command for achieving
EngineA = Firing is executed correctly. Since the single

goal constraint is not yet satisfied, and the only enabled

transition is the self-transition at location 8, the markings
and configuration goals remain unchanged (see Fig. 14).

Remaining Steps:Given the same configuration goal as
the last step, mode reconfiguration issues the next command
required to achieve EngineA = Firing. It repeats this
process until a flow of fuel and oxidizer are established, and
mode estimation confirms that the engine is indeed firing.
Since this violates the maintenance condition on automaton
1, the entire block of Fig. 11 is exited. Note that since no
engine failure occurred during this process, the thread of
execution waiting for EngineA = Failed did not advance
from its start location (location 8).

VI. DEDUCTIVE CONTROLLER

In this section, we present Titan’s model-based deductive
controller (see Fig. 15), which uses a plant model to es-
timate and control the state of the plant. A physical plant
is composed of discrete and analog hardware and software.
We model the behavior of the plant as a POMDP, which
is encoded compactly using probabilisticconcurrent con-
straint automata (CCA). Concurrency is used to model the
behavior of a set of components that operate synchronously.
Constraints are used to represent cotemporal interactions be-
tween state variables and intercommunication between com-
ponents. Probabilistic transitions are used to model the sto-
chastic behavior of components, such as failure and intermit-
tency. Reward is used to assess the costs and benefits associ-
ated with particular component modes.

This section begins by defining CCA as a composition
of constraint automata for individual components of a plant.
The CCA encoding of the plant model is essential to the ef-
ficient operation of the deductive controller (see Fig. 15).
In Section VI-E, we develop mode estimation, which esti-
mates the most likely state of a CCA, and in Section VI-F,
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Fig. 14 Marking of the orbital insertion HCA after the second transition.

Fig. 15 Architecture for the deductive controller.

we develop mode reconfiguration, which generates a control
sequence that transitions the CCA to a state that achieves a
configuration goal.

A. Constraint Automata

The semantics of the plant model was introduced in Sec-
tion III-A. Our model of a physical plant is encoded as a
set of concurrently operatingconstraint automata, one con-
straint automaton for each component in the model. Con-
straint automata are component transition systems that com-
municate through shared variables. The transitions of each
constraint automaton represent a rich set of component be-
haviors, including normal operation, failure, repair actions,
and intermittency. The constraint automata operate synchro-
nously; that is, at each time step every component performs a
single state transition. Constraint automata for the simplified
spacecraft components were provided pictorially in Fig. 5.

Each constraint automaton has an associatedmode vari-
able with domain . Given a current mode assign-
ment, , the component changes its mode by selecting
a transition function among a set of possible tran-
sition functions , according to probability distri-
bution . A component’s behavior within each

mode is modeled by an associated constraint
over the component’s attribute variables, and an associated
reward .

More precisely, the constraint automatonfor component
is described by a tuple , where:

1) is a set of variables for the component, where each
var ranges over a finite domain var . is par-
titioned into a singleton set , containing the com-
ponent’s mode variable , and a set of attribute
variables . Attributes include input variables, output
variables, and any other variables needed to describe
the modeled behavior of the component. de-
notes the set of all finite-domain constraints over.

2) associates with each mode as-
signment a finite domain constraint

. This constraint captures the component’s
behavior in a given mode.

3) associates with each
mode assignment a set of transi-
tion functions. Each transition function

specifies an assignment to at time
, conditioned on satisfaction of a constraint in

at time . is the set { ,
, }, where the transi-

tion function representing nominal behavior is denoted
, and the other transition functions repre-

sent fault behaviors.
4) denotes the probability that

is the initial mode for component.
5) denotes, for each mode

variable assignment , a probability distribution
over the possible transition functions .

6) denotes the reward associated with
mode variable assignment .
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Fig. 16 Constraint automata for a driver component and a valve component. The driver has a single
fault mode, “resettable,” corresponding to a recoverable failure of the device. The valve is also
modeled with a single fault mode, “stuck-closed.” The probabilistic transitions from the nominal
modes to these failure modes are omitted from the diagram for clarity.

It should be noted that these transitions correspond to a re-
stricted form of the transitions defined for HCA. Transitions
between successive modes are conditioned on constraints on
variables . For each value of component mode variable

, we represent each of its transition functions, ,
as a set oftransition pairs ( ), where , and
is a set of labels (or guards) of the form (denoted ) or

(denoted ), for some . This corresponds to
the traditional representation of transitions as labeled arcs in
a graph, where and are the source and target of an arc
with label . Unlike HCA transitions, we impose the restric-
tion that, for each transition function, exactly one transition
pair will be enabled for any mode assignment . This
means that a component can only be in a single mode at any
given time.

B. Concurrent Constraint Automata

A physical plant is modeled as a composition of concur-
rently operating constraint automata that represent its indi-
vidual components. This composition, including the inter-
connections between component automata and interconnec-
tions with the environment, is captured in a CCA.

Formally, a CCA is described by a tuple , where
the following conditions exist.

1) denotes the finite set of con-
straint automata associated with thecomponents in
the plant.

2) is a set ofplant variables, where each var
ranges over a finite domain var . denotes the
set of all finite-domain constraints over. is parti-
tioned into sets ofmodevariables ,
control variables , observablevari-
ables , and dependentvariables

.

3) is a conjunction of constraints
providing the interconnections between the attributes
of the plant components.

Mode variables represent the state of each component. Ac-
tuator commands are relayed to the plant through assign-
ments to control variables. Observable variables capture the
information provided by the plant’s sensors. Finally, depen-
dent variables represent interconnections between compo-
nents. They are used to transmit the effects of control actions
and observations throughout the plant model.

The state space of, denoted , is the cross product
of the var , for all variables var . The state space of
the plant mode variables , denoted , is the cross
product of the , for all variables . A stateof
the plant at time, , assigns to each component
mode variable a value from its domain. Similarly, anobser-
vation of the plant, , assigns to each observ-
able variable a value from its domain, and acontrol action,

, assigns to each control variable a value from
its domain.

A CCA models the evolution of physical processes by
enabling and disabling constraints in aconstraint store.
Enabled constraints in the store would include the set of

constraints imposed by the current plant state
and the constraints associated with the CCA.

C. CCA Specification Example

Consider the valve and driver component models de-
picted in Fig. 16. The plant variables associated with
these components are Driver and Valve, with domains of
{On, Off, Resettable} and {Open, Closed, Stuck-closed},
respectively. The driver’s constraint automaton has attributes
dcmd and dcmd . The valve’s constraint automaton has
attributes vcmd, inflow, and outflow.
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The mode constraints for the driver component are
specified as follows:

(Driver = On) dcmd dcmd

(Driver = Off) dcmd no-cmd

Driver = Resettable dcmd no-cmd

For the driver component, two transition functions are spec-
ified, the nominal transition function and the failure
transition function

(Driver = On) dcmd Off,Off

dcmd Off,On

(Driver = Off) dcmd On,On

dcmd On,Off

Driver = Resettable dcmd Reset,On

dcmd Reset,

Resettable

Driver = On True, Resettable

Driver = Off True, Resettable

Driver = Resettable (True,Resettable)

Mode constraints and transition functions can be similarly
expressed for the valve component.

The probabilities in associated with transition
functions and are 0.99 and 0.01, respec-
tively (in this case, the probabilities are independent of the
current mode variable assignment). Modal costs and initial
mode probabilities are not specified in this example.

For the CCA composed of the driver and valve con-
straint automata, we specify the set of control vari-
ables dcmd , the set of observable variables

inflow outflow , and the set of dependent variables
dcmd vcmd .

The component interconnections are given by

dcmd vcmd

D. Feasible Trajectories of Concurrent Constraint
Automata

Next, consider the set of trajectories that arefeasible, that
is, trajectories in which each pair of sequential states is con-
sistent with a CCA. We defer to the next section discussion
of the computation of the most likely plant state, given a set
of observations.

Given a sequence of control variable assignments
[ ], a feasible trajectoryof a plant is a
sequence of plant states [ ], such that: 1)
is a valid initial plant state, i.e., for
all assignments ; and 2) for each ,

Step .
Step transitions the

CCA of a plant , by nondeterministically executing a tran-
sition for each of its component automata, according to the
algorithm in Fig. 17.

Fig. 17 Step algorithm.

Fig. 18 One step of mode estimation for the orbital insertion
example. Possible faulty valves are circled and closed valves are
filled.

We use Step to denote a variant of the step function
that is restricted to only the nominal transition function. A
trajectory that involves only nominal transitions is called
a nominal trajectory.

E. Estimating Modes

Mode estimation incrementally tracks the set of plant
trajectories that are consistent with the plant model, the
sequence of observations, and the control actions. This is
maintained as a set of consistent current states. For example,
suppose the deductive controller is trying to maintain the
configuration goal EngineA = Firing, as shown on the
left in Fig. 18. We assume that mode estimation starts with
knowledge of the initial state, in which a set of open valves
allows a flow of oxidizer and fuel into Engine A. In the
next time instant, the sensors send back the observation that
Thrust = Zero. Mode estimation then considers the sets

of possible component mode transitions that are consistent
with this observation, given the initial state and plant CCA.
It identifies a number of state transitions that are consistent
with this observation, including that either of the inlet valves
into Engine A has transitioned to stuck closed, or that any
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combination of valves along the fuel or oxidizer supply path
are stuck closed, as depicted on the right in Fig. 18.

Unfortunately, the size of the set of possible current states
is exponential in the number of components. Even for this
simple example, this reaches about a trillion states. Further-
more, a large percentage of these states will not be ruled out
by past observations. For example, given a system whose be-
havior looks correct based on current observations, it is al-
ways possible thatany combination of components—from
one to all—are broken in a novel manner, but have simply
not manifested their symptoms yet.

This exponential set is infeasible to track in real time for
most practical embedded systems. In addition, the set of con-
sistent states is far too large to provide significant useful in-
formation. To perform useful actions, the deductive controller
needs tobeable todistinguish thesmall setofplausiblecurrent
states fromthe largesetofconsistentbut implausiblestates.To
accomplish this, mode estimation computes the likelihood of
the current estimated states, called abelief state. In addition, it
computes the set of consistent trajectories and states in order
of likelihood. This offers an any-time algorithm, by stopping
when no additional computational resources are available to
compute the less likely trajectories.

In Section III, we defined the plant model in terms of a
POMDP, and discussed how mode estimation is framed as
an instance of belief state update. In this section, we discuss
the implementation of belief state for CCA. We then describe
the simplest variant of mode estimation for CCA, based on a
form of beam search.

1) Belief Update for CCA:To define belief update for
CCA, we simply need to define and . To be con-
sistent with our earlier development, these definitions must
constrain the probability of any inconsistent trajectory to be
zero. To calculate the probabilistic transition function for
state of a plant CCA, we define a plant transition function
to be composed of a set of component transition functions,
one for each component mode . In addition, a
CCA specifies the transition probability distribution for each
component mode through . We make the key
assumption that component transition probabilities are con-
ditionally independent, given the current plant state. This
is analogous to the failure independence assumptions made
by the General Diagnostic Engine (GDE) [19], Sherlock [20]
and Livingstone [3], and is a reasonable assumption for most
engineered systems. Hence, is computed as a cross
product of the probability distributions over the individual
component transition functions

We calculate the observation function for from the
CCA, taking an approach similar to that of GDE [19]. Given
the constraint store for , computed as the conjunc-
tion of and for all , we test
if each observation in is entailed or refuted by the con-
junction of and , giving probability 1 or 0, respec-
tively. If no prediction is made, that is, if an observation is

neither entailed nor refuted, then ana priori distribution on
possible values of the observable variable is assumed (e.g.,
a uniform distribution of for possible values). This
offers a probabilistic bias toward states that predict observa-
tions, over states that are merely consistent with the obser-
vations. These two definitions for and complete our
belief update equations for CCA.

2) CCA Belief Update Under Tight Resource Con-
straints: The remaining step of our development is to
implement mode estimation as an efficient form of limited
belief update. Earlier in this section, we pointed out that the
belief state contains an exponential number of states. In par-
ticular, the belief state is , where is the number of mode
variables and is the size of the domain of the mode variables.
A real-worldmodelofanembeddedsystem,suchas themodel
developed for NASA’s DS-1 probe [3], involves roughly 80
mode variables and 3 states. DS-1 allocated 10% of its
20–MHz processor to mode estimation and reconfiguration,
and had an update rate for sensor values of once every second.
These resource constraints allow only a small fraction of the
state space to be explored explicitly in real time.

A standard approach, frequently employed for Hidden
Markov Models, is to construct the Trellis diagram (see
Fig. 6) over a finite, moving window, and to identify the
most likely trajectory as a shortest path problem. In state
estimation for CCA, the Trellis diagram forms a constraint
graph with concurrent transitions, and the shortest path is
found by framing a problem to the OpSat optimal constraint
satisfaction engine [21].

For embedded systems with severe computational re-
source constraints, such as a spacecraft, we desire an
approach that limits the amount of online search. This may
be accomplished by tracking the most likely trajectories
through the Trellis diagram, expanding only the highest
probability transitions at each step, as time permits. This
approach provides an any-time algorithm, as the most
likely belief states are generated in best-first order.4 From
a practical standpoint, this approach has proven extremely
robust on a range of space systems [3], including deep-space
probes, reusable launch vehicles, and Martian habitats, and
it far surpasses the monitoring capabilities of most current
embedded systems.

3) Computing Likely Mode Estimates Using OpSat:Titan
frames the enumeration of likely transition sets as an optimal
constraint satisfaction problem (OCSP) and solves the
problemusing theOpSatalgorithm,presented indetail in [21].

An OCSP is a problem of the form “arg max
subject to ,” where is a vector of decision vari-

ables, is a set of propositional state constraints, and
is a multiattribute utility function that ismutually pref-

erentially independent (MPI). is MPI if the value of
each that maximizes is independent of the values
assigned to the remaining variables.

Solving an OCSP consists of generating a prefix of the
sequence of feasible solutions, ordered by decreasing value

4The limitation is that a low probability trajectory may be pruned, which,
after additional evidence is collected, could become highly likely.
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Fig. 19 A spacecraft has complex paths of interaction: commands issued by the flight computer
pass through the bus controller, 1553 bus, and PDE on the way to the spacecraft main engine system.

of . A feasible solution assigns to each variable ina
value from its domain such that is satisfied. To solve
an OCSP, OpSat tests a leading candidate for consistency
against . If it proves inconsistent, OpSat summarizes
the inconsistency (called aconflict) and uses the summary to
jump over leading candidates that are similarly inconsistent.

To view mode estimation as an OCSP, recall that each plant
transition consists of a single transition for each of its compo-
nent transition systems. Hence, we introduce a variable into
for each component in the plant whose values are the possible
component transitions. Each plant transition corresponds to
an assignment of values to variables in. is used to
encode the condition that the target state of a plant transi-
tion and its corresponding constraint store must be consistent
with the observed values. The objective function,, is just the
prior probability of the plant transition. The resulting OCSP
identifies the leading transitions at each state, allowing mode
estimation to track the set of likely trajectories.

Note that the OCSP for a typical plant model is quite large.
For example, the plant model developed for the DS-1 space-
craft consisted of roughly 80 mode variables, 3300 proposi-
tional variables, and 12 000 propositional clauses. The two
reasoning methods we employ in OpSat to achieve fast re-
sponse are conflict-directed A* [21] and incremental truth
maintenance (ITMS) [22]. Consistency of a candidate solu-
tion is tested through systematic search and unit propagation.
For our applications, the cost of performing unit propagation
dominates. The ITMS offers an incremental approach to per-
forming unit propagation that provides an order of magnitude
performance improvement over traditional truth maintenance
systems. If the ITMS finds a candidate to be inconsistent,
it returns a conflict associated with the inconsistency. Con-
flict-directed A* then uses the conflicts returned by the ITMS
to prune inconsistent subspaces during best-first search over
decision variables . Conflict-directed A* dramatically re-
duces the number of candidate states tested for consistency
during mode estimation; for most applications, the number
is typically less than a dozen states.

F. Reconfiguring Modes

Mode reconfiguration takes as input a configuration goal
and returns a series of commands that progress the plant to-
ward a maximum-reward state that achieves the configura-
tion goal. Mode reconfiguration accomplishes this through
two capabilities, thegoal interpreterand reactive planner.
These capabilities operate in tight coordination with mode

estimation, described in the preceding section. The goal in-
terpreter uses the plant model and the most likely current
state, provided by mode estimation, to determine a reachable
goal state that achieves the configuration goal, while maxi-
mizing reward. The reactive planner takes a goal state and a
current mode estimate, and generates a command sequence
that moves the plant to this goal state. The reactive planner
generates and executes this sequence one command at a time,
using mode estimation to confirm the effects of each com-
mand. For example, in our orbital insertion example, given a
configuration goal ofEngineA = Firing, goal interpretation
selects a set of valves to open, in order to establish a flow of
fuel into the engine. Reactive planning then sends commands
to control units, drivers, and valves to achieve this goal state.

Having identified which valves to open and close, one
might imagine that achieving the configuration is a simple
matter of calling a set of open-valve and close-valve rou-
tines. This is in fact how Titan’s predecessor, Livingstone
[3], performed mode reconfiguration. However, much of the
complexity of mode reconfiguration is involved in correctly
commanding each component to its intended mode, through
lengthy communication paths from the control processor.

For example, Fig. 19 shows a typical set of communica-
tion paths from the flight computer to part of the spacecraft
main engine system. The flight computer sends commands
to a bus controller, which broadcasts these commands over a
1553 data bus. These commands are received by a bank of de-
vice drivers, such as the propulsion drive electronics (PDE).
Finally, the device driver for the appropriate device translates
the commands to analog signals that actuate the device.

The following is an example of a scenario that a robust
close-valve routine should be able to handle:

The close-valve routine should first ascertain if the valve
is open or closed, by polling its sensors. If it is open, it
needs to broadcast a “close” command. However, first it
needs to determine if the driver for the valve is on, again
by polling its sensors, and if not, it should send an “on”
command. Now suppose that shortly after the driver is
turned on, it transitions to a resettable failure mode. The
valve driver needs to catch this failure, and then before
sending the “close” command, it should issue a “reset”
command. Once the valve has closed, the close-valve
routine should power off the valve driver, to save power.
However, before doing so, it should change the state of
any other valve that is controlled by that driver; other-
wise, the driver will need to be immediately turned on
again, wasting time and power.
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There are several properties that make mode reconfigura-
tion complex. First, devices are controlled indirectly through
physical interactions that are established and removed by
changing modes of other devices. Hence, to change a de-
vice’s mode, a communication path must be established to
that device, by changing the modes of other devices. Second,
because communication paths are shared with multiple de-
vices, mode changes need to be carefully ordered, in order to
avoid unintended or destructive effects. Third, since failures
occur, the modes of all relevant devices need to be monitored
at each step, through all relevant sensors. Finally, corrective
action should be performed as soon as a failure is detected,
in order to mitigate further damage.

The challenge for mode reconfiguration is twofold. First,
controlling a plant, described by CCA, generalizes the classic
artificial intelligence (AI) planning problem [23], which is
already NP-hard, to one of handling indirect effects. Second,
to be practical for embedded systems, the deductive con-
troller’s response time should be driven toward a small con-
stant. Accomplishing this requires eliminating as many in-
stances of online search as possible.

1) Robustness Through Reversibility:A key decision
underlyingourmodel-based executive is the focuson the most
likely trajectory generated by mode estimation. Livingstone
[3] took a more conservative strategy of considering a single
control sequence that covers the complete set of likely states.
Thedifficultywith this approach is that the differentestimated
states will frequently require different control sequences.

Utility theory can be used to select, among different con-
trol sequences, one that maximizes the expected likelihood of
success [24]. However, the cost of generating multiple states
and control sequences works against our goal of building
a fast reactive executive. Achieving this goal is essential if
model-based programming languages are to be employed
within everyday embedded systems, where procedural pro-
gramming is the norm.

Instead, we adopt a greedy approach of assuming the most
likely estimated state is the correct state. This greedy ap-
proach introduces risk: the control action appropriate for the
most likely state trajectory may be inappropriate, or worse
damaging, if the actual state is something else. Furthermore,
the reactive focus of the model-based planner precludes ex-
tensive deliberation on the long-term consequences of ac-
tions, thus leaving open the possibility that control actions,
while not outright harmful, may degrade the system’s capa-
bilities. For example, firing a pyro valve is an irreversible
action that forever cuts off access to parts of the propulsion
system. Such actions should be taken after a human oper-
ator or high-level planning system explicitly reasons through
the consequences of the actions over a future time horizon.
Hence, fundamental to the reliability of our approach is the
requirement that MR will only generate reversible control ac-
tions, unless the purpose of the action is to repair failures.5

2) Goal Interpretation (GI): GI is closely related to
mode estimation. While mode estimation searches for
likely modes that are consistent with the observations, GI

5While repairing a failure is irreversible, it is important to allow a reactive
executive to repair failures, in order to increase functionality.

Fig. 20 ComputeGoalStatesalgorithm.

searches for modes that entail the configuration goal while
maximizing reward. GI generates a maximum-reward plant
state that satisfies the current goal configuration
and that is reachable from the current most likely state,
using nominal transitions whose effects arereversible. We
define reversible transitions as transitions for which
the source state may be returned to from the target state by
a sequence of nominal control actions. We use
to denote the set of all states that are reachable from
through repeated application of reversible transitions. We
call these states “reversibly reachable” from .

A priori, computing seems like an expensive
task. It could be computed by generating all trajectories
of reversible transitions originating at , for example,
by employing a symbolic reachability analysis similar to
those used by symbolic model checkers. However,
has the key property that it may be computed as the cross
product of reachable target mode assignments, ,
of the reversible transitions for individual components

This property follows from subtle arguments related to
reversibility of mode assignments and transitions [4]. The
goal interpretation function, ComputeGoalStates

2 , employs this property to compute the set
of all reversibly reachable target statesthat achieve con-
figuration goal , given a plant model with estimated
current state . This algorithm is presented in Fig. 20.

Given reversibly reachable states for each
component mode variable , casting GI as an OCSP

is straightforward. There is a decision variable
in for each , with domain , representing
the reversibly reachable modes of component.
is the condition that the target assignmentis consis-
tent with “constraint store” , and that , together
with , entail configuration goal . is the reward,

, of being in a state. An example of
a reward metric is power consumption. Once again, Titan
solves this OCSP using OpSat [21].

Fig. 21 shows an example of a conflict-directed search
sequence, which OpSat performs during GI. Suppose we
have the configuration goalSpacecraft = Thrusting, which
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Fig. 21 Snapshots demonstrating how the goal interpreter searches for a reachable state that
achieves the configuration goal of(Spacecraft = Thrusting)with maximum reward. Conflicts used to
direct the search are highlighted by the small black arrows. In the last step, GI identifies that the open
valves on the disabled Engine A should be closed, to minimize loss of propellant.

is achievable by firing either engine. Furthermore, suppose
that the right flow inlet valve to Engine A has just stuck
closed. This is the configuration shown in the upper left of
Fig. 21, with the stuck valve circled and closed valves filled
in. Starting with this configuration as a candidate goal state,
GI deduces that it does not entailSpacecraft = Thrusting.
Furthermore, it extracts the conflict that thrust cannot be
achieved unless the right inlet valve on either engine is
opened. The right inlet valve on Engine A is stuck closed
and cannot be made open. To resolve the conflict, OpSat
creates a new candidate state, which has the right inlet
valve to Engine B open, as shown in the upper right of
Fig. 21. OpSat tests this candidate and proves that it also
does not entail thrust. In addition, it extracts the conflict
that thrust will not be achieved as long as one of the two
highlighted valves feeding Engine B is closed, or the stuck
inlet valve to Engine A remains closed. OpSat generates the
next candidate [Fig. 21 (lower right)], by opening one of
the two highlighted valves leading into Engine B (the one
with higher reward associated with its open mode). OpSat
continues this process, and finds the maximum-reward goal
state that achieves thrust [Fig. 21 (lower left)], after testing
less than ten candidates. This is an exceptionally small
number of tested candidates, given that the state space for
this example contains roughly 3possible target states.

3) Reactive Planning:Given a goal state supplied by GI,
the reactive planner (RP) is responsible for achieving this
goal state. Titan’s model-based RP is called Burton and was
first introduced in [4]. RP takes as input the current most
likely state and the goal state selected by GI, and gener-
ates the first control action that moves the plant toward the
goal state. More precisely, RP takes as input a CCA model
of a plant , a most likely current state (from ME),
and a maximum-reward goal state (from GI) that sat-
isfies goal . RP generates a control action such that

Step is the goal state , or
is the prefix of a simple nominal trajectory that

ends in .
Titan’s model-based reactive planning problem closely re-

lates to the classic AI planning problem [23].6 The key dif-
ference is that a classical planner invokes operators thatdi-
rectly modify state. Titan’s model-based RP, on the other
hand, exerts control by establishing values for control vari-
ables, which interactindirectlywith internal plant state vari-
ables, through cotemporal, physical interactions, represented

6The classic AI planning problem involves generating a set of discrete ac-
tions that move the system from an initial state to a goal state, where each
action is an instance of a STRIPS operator [25]. A STRIPS operator is an
atomic action that maps states to states. It is specified by a set of precondi-
tions and a set of effects, which enumerate all changes in variable values.
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in the CCA. This extension adds substantial expressivity to
the planner.

The challenge is to preserve this expressivity, while
providing a planner that is reactive. Titan’s RP meets five
desiderata. First, it only generatesnondestructive actions,
that is, an action will never undo the effects of previous
actions that are still needed to achieve top-level goals.
Second, RP will not propose actions that lead todeadend
plans, that is, it will not propose an action to achieve a
subgoal when one of the sibling subgoals is unachievable.
Third, the reactive planner iscomplete, that is, when given
a solvable planning problem, it will generate a valid plan.
Note, however, that RP may not generate the shortest length
plan. Fourth, RP ensuresprogressto a goal, except when
execution anomalies interfere, that is, the nominal trajec-
tory generated by RP for a fixed goal is loop-free. Fifth,
RP operates atreactive time scales—its average run-time
complexity is constant. This speed is essential to providing
a model-based executive with response times comparable to
traditional procedural executives [26], [27].

Classical planners search through the space of possible
plans, while using mechanisms, such asthreat detection, to
determine if one action is in danger of prematurely removing
an effect intended for a subsequent action [23]. Titan’s RP
avoids run-time search, requires no algorithms for threat de-
tection, and expends no effort determining future actions or
planning for subgoals that are not supported by the first ac-
tion. The RP accomplishes this speedup by exploiting the re-
quirement that all actions, except repairs, be reversible, and
by exploiting certain topological properties of component
connectivity that frequently occur in designed systems. This
permits a set of subgoals to be solved serially (that is, one at
a time), using divide and conquer to achieve an exponential
speedup.

A complete development of RP is beyond the scope of this
paper. The design of the Burton reactive planner has been
previously presented in [4]. In the remainder of this section,
we highlight three key elements of RP: compilation of con-
current constraint automata into concurrent automata without
constraints, generation of concurrent policies from the com-
piled concurrent automata, and online execution of the con-
current policies.

Compiling Away Indirect Interactions:Indirect control
and effects substantially complicate planning. We solve the
problem of indirect control and effects at compile-time, by
mapping the plant CCA to an equivalent automaton that only
hasdirecteffects. In particular, the transition labels of a CCA
contain conditions involving dependent variables that are not
directly controllable, but depend on control variables that are
related through the mode constraints and the intercon-
nections . In the slightly modified driver/valve example of
Fig. 22, the valve transitions are conditioned on assignments
to the dependent variable vcmd, which is linked to control
variable dcmd by the interconnection constraints and the
mode constraints of the driver [see Fig. 22(a)].

To eliminate indirect control, we eliminate dependent vari-
ables from each transition label, by constructing an equiva-
lent label in terms of control and mode variables alone. For

example, we replace the valve’svcmd open transi-
tion label with the pair of conditionsdriver = on, dcmd
open} [see Fig. 22(b)]. Once the dependent variables have
been eliminated from the labels, the mode constraints
and interconnectionsare no longer needed, and hence are
removed, as shown in Fig. 22(b). The result is a set of con-
current automata without constraints, that are conditioned on
control variable assignments (calledcontrol conditions) and
mode variable assignments (calledstate conditions).

Compilation is performed by a restricted form ofprime im-
plicant generationthat is described in [4]. While prime im-
plicant generation is NP-hard, in practice even sizable sets
of implicants can be generated very fast. We use OpSat [21]
to perform a form of abductive best-first search for prime
implicants in the plant model. This allows us to generate im-
plicants from a spacecraft model consisting of over 12 000
clauses in about 40 s on a Sparc 20. We compute these im-
plicants at compile-time, thus avoiding the impact of these
computations on run-time performance.

Generating Concurrent Policies:Once the constraints
have been compiled out of the concurrent automata, we use
these automata to generate control codes for each compo-
nent, which form a set of concurrentfeasible policies. For
each possible current mode assignment and goal
mode assignment , a feasible policy maps pairs

to the ordered list of state conditions and control
conditions that must be achieved in order to transition from

to (see Fig. 23). For example, given the goal state of
(valve = open), and current state (valve = closed), the valve
policy says that the plan must first achieve the goal state
(driver = on).

To generate such policies, RP imposes the following re-
quirements on the compiled plant model.

1) Each control variable has an idling assignment, and
no idling assignment appears in any transition. The
label of every transition includes a (nonidling) control
assignment or a mode assignment subgoal.

2) No set of control assignments of one transition is a
proper subset of the control assignments of a different
transition.

3) The causal graph for the compiled concurrent au-
tomaton must beacyclic. A causal graph for a
compiled plant model is a directed graph whose ver-
tices are the state variables of the plant.contains an
edge from variable to , if appears in the label
of any of ’s transition pairs ( ). In the compiled
model for the driver/valve example, the state variable
driver appears in two of the transitions for thevalve
component, so we draw an edge fromdriver to valve
in the causal graph (see Fig. 24).

The basic idea behind these policies is that we wish to
solve a conjunction of goal assignments by achieving
conjuncts one at a time—that is,serially—and by ordering
goal achievement by working “upstream” along the acyclic
causal graph, from outputs to control variables. This up-
stream ordering corresponds to a topological numbering.
We establish atopological orderamong component mode
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Fig. 22 Compilation example for a driver/valve pair. The uncompiled concurrent constraint
automata are shown in (a) and the compiled concurrent automata are shown in (b).

Fig. 23 Policies for the driver (top) and valve (bottom).

variables by performing a depth-first search of the causal
graph at compile-time, and numbering variables on the way
out. For our example, this process determines the topological
order as indicated in Fig. 24. By encoding serialized goals
in the policies, we eliminate the potential for conflicting
subgoal interactions, thus guaranteeing that RP generates
nondestructive action sequences. Proof of this fact is pro-

Fig. 24 A causal graph for the driver/valve pair. This causal graph
is acyclic. Topological numbers are circled.

vided in [4]. Achieving subgoals serially also ensures that
RP always makes progress toward the goal (Desiderata 4).

For a mode variable with domain size , ’s policy
is of size , and the policy is computed in time,
where is the maximum number of transitions in a single
component constraint automaton. Entries for eachare de-
termined by computing a spanning tree directed toward
that connects all reversibly reachable modes, by reversible
transitions.

RP’s concurrent policies are analogous to traditional op-
timal policies in control theory and universal plans in AI. An
important difference is that Titan’s RP constructs a set of con-
current policies, rather than a single policy for the complete
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Fig. 25 ComputeNextAction algorithm.

state space. A traditional policy grows exponentially in the
number of state variables, and is infeasible for models such
as a spacecraft, which contain more than 80 state variables
and 3 states. In contrast, Titan’s concurrent policies grow
only linearly in the number of state variables, and have the
additional feature of preserving modularity.

Online Policy Execution:Once the concurrent
policies have been generated at compile-time, plan-
ning is performed using the online reactive planning
function ComputeNextAction, presented in Fig. 25.
ComputeNextAction takes as input the current state esti-
mate , a goal state compiled concurrent policies

and the flag top?, used to indicate a top-level call.
ComputeNextAction returns either a next control action,
Failure if no plan exists, orSuccessif the current state is the
goal state. The assignments in are sorted by topological
number, providing an upstream order in which the goals
may be solved serially. A control action is a partial set of
control assignments. All control variables not mentioned are
assigned their idle value.

Step 1 of ComputeNextAction tests whether or not a con-
junction of top-level goals can be achieved. This operation
can be performed very quickly, because the set of reversibly
reachable modes, , has already been computed
during the offline CCA compilation process. Since the RP
only introduces subgoal assignments that are guaranteed
to be achievable, the test is needed at the top level only.
Step 2 works upstream along the causal graph of variables,
selecting the next unsatisfied (sub)goal assignment to be
achieved. Step 3 takes the first step toward achieving the
selected (sub)goal. Given a current assignment , a
goal assignment is achieved by traversing a path
along transitions of from to . Step 3 identifies the first
transition along this path from to . Step 4 recursively
calls ComputeNextAction on the subgoals comprising the
state conditions of this first transition, which results in the
RP moving further upstream. If one or more state conditions
of the transition is unsatisfied, then a next control action
is computed in Step 4, and returned. If all state conditions
are satisfied, then the transition is ready to be executed, and
Step 4 returns the transition’s control conditions as the next
control action.

For example, suppose mode estimation identifies the
current state asdriver = off, valve = open, and goal inter-

pretation provides the goalvalve = closed, driver = off,
which is determined to be reversibly reachable (Step 1). Step
2 selects the first goal assignment in the topological order,
valve = closed. Step 3 looks up open closed in the valve

policy (see Fig. 23), and gets SC driver = on and
CC dcmd close . The first is an unsatisfied state
condition, so Step 4 recursively calls ComputeNextAction
with (driver = on) as the goal. Looking up off on in
the driver policy , we get the control condition
dcmd on . This control assignment is returned by

ComputeNextAction and is immediately invoked.
For a fixed goal and no intervening failures, RP generates

successive control actions as a depth-first traversal through
the policy tables. This traversal maps out a subgoal tree, and
RP maintains an index into this tree during successive calls.
To generate a sequence, RP traverses each tree edge exactly
twice, and generates one control action per vertex. Since the
number of edges in a tree is bounded by the number of ver-
tices, theaveragecase complexity of generating each con-
trol action is roughly constant.7 Thus, Desiderata 5—reac-
tivity—is achieved.

Failure States and Repair:A key function of RP is
to handle failure. To accomplish this, we incorporate repair
actions. The occurrence of failures are outside the reactive
planner’s control, since there are no nominal transitions that
lead to failure. Hence, a repair sequence is irreversible, al-
beit essential, and so is not covered by the development thus
far. Titan’s RP permits repair sequences, which are selected
so as to minimize the number of irreversible steps taken. RP
never uses a failure to achieve a goal assignment if the failure
is repairable. However, if it is not repairable, then RP is al-
lowed to exploit the component’s faulty state. For example,
suppose a valve is needed to be open, and it is permanently
stuck-open. Since stuck-open is irreparable but has the de-
sired effect, RP exploits the failure mode. The algorithm used
by RP to invoke appropriate repair actions is presented in [4].

Returning to our driver/valve example, suppose mode
estimation reports that the driver has just turned on as a
result of our last call to ComputeNextAction. The cur-
rent and goal assignments of the valve are unchanged,
hence the entrysc,cc driver = on dcmd close
is revisited. However, the first conjunct, (driver = on),
is now satisfied. Since no state conditions remain, RP
issues (dcmd close) as the next action. Next, assume
mode estimation reports that a partial failure occurred
after the last command was issued, such that the current
state is (driver = resettable, valve = closed). In its next
call to ComputeNextAction, RP determines that the first
unachieved goal assignment is now (driver = off). Looking
up resettable off in the driver policy (see Fig. 23)
results in the repair action (dcmd off).

7The caveat is that at each node all of the assignments of a label’s transi-
tion may be visited, in order to find the next one that needs to be achieved.
A label typically contains only a couple of assignments; thus, its size can
generally be bounded by a small constant, but in the worst case this is on the
order of the number of concurrent automata.
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VII. D ISCUSSION

The RMPL compiler is written in C++. It generates HCA
from RMPL control programs. The compiler supports all
RMPL primitive combinators, and a variety of derived
combinators. Plant models are currently written in MPL,
the modeling language used for Livingstone. Compilation
of the models into CCA is performed using Livingstone’s
Lisp-based compiler. The Titan model-based executive is
written in C++, and builds on the OpSat system [21]. Titan
is being demonstrated on mission scenarios for NASA’s
MESSENGER mission, and will be flight demonstrated
on the MIT SPHERES spacecraftinside the International
Space Station. Titan is a superset of the Livingstone system
[3], which was demonstrated in flight on the DS-1 mission,
and on a range of testbeds for NASA, the U.S. Navy and
industry, including a space interferometer [9], a Marsin situ
propellant production plant [10], and a Mars rover prototype
[28].

Turning to related work, the model-based programming
paradigm synthesizes ideas underlying synchronous pro-
gramming, concurrent constraint programming, traditional
robotic execution, and Markov models. Synchronous pro-
gramming languages [11], [12] were developed for writing
control code for reactive systems. Synchronous program-
ming languages exhibit logical concurrency, orthogonal
preemption, multiform time, and determinacy, which Berry
has convincingly argued are necessary characteristics for
reactive programming. RMPL is a synchronous language,
and satisfies all these characteristics. One major goal
of synchronous programming is to provide “executable
specifications,” that is, to eliminate the gap between the
specifications about which we prove properties, and the pro-
grams that are supposed to implement these specifications.
We carry this one step further by performing our reasoning
on executable programs directly, in real time.

Model-based programming and concurrent constraint
programming share common underlying principles, in-
cluding the notion of computation as deduction over systems
of partial information [29]. RMPL extends constraint
programming with a paradigm for exposing hidden states,
a replacement of the constraint store with a deductive
controller, and a unification of constraint-based and Markov
modeling. This provides a rich approach to managing
discrete processes, uncertainty, failure, and repair.

RMPL and Titan also offer many of the goal-directed
tasking and monitoring capabilities of AI robotic execution
languages, like RAPS [26] and ESL [27]. One key differ-
ence is that RMPL’s constructs fully cover synchronous
programming, hence moving toward a unification of a
goal-directed AI executive with its underlying real-time
language. In addition, Titan’s deductive controller handles
a rich set of system models, moving execution languages
toward a unification with model-based autonomy.

We are pursuing a number of extensions to the model-
based programming language and executive presented here.
For example, in [7] we extend the model-based program-
ming paradigm to include fast temporal planning. In [30],

we extend the mode estimation capability of the executive
to handle hybrid concurrent constraint automata, whose con-
straints are linear ordinary differential equations. Finally, we
are extending RMPL to coordinate heterogeneous cooper-
ative systems, such as fleets of unmanned air vehicles and
Mars explorers [31], by unifying high-level mission planning
with agile path planning.

APPENDIX

DERIVED RMPL COMBINATORS

The following useful derived combinators can be
constructed from the primitive constructs presented in
Section IV-B2:

next : This expression starts executing expressionin
the next instant. It is equivalent to {if true thennext }.

if thennext elsenext : This extendsif then-
next . Expression is executed starting in the next in-
stant if is not entailed by the most likely current state.is
anaskconstraint on the variables of the physical plant. This
expression is equivalent to {if thennext , unless
thennext }.

when donext : This is a temporally extended version
of if thennext . It waits until constraint is entailed by
the most likely plant state, then starts executingin the next
instant. is anaskconstraint on the variables of the phys-
ical plant. This expression is equivalent to {always if ( )
thennext , do always watching }, where is a nonphys-
ical state assertion introduced for guarding against starting

after the first instant in which is entailed. is trivially
achieved when asserted.

whenever donext : This is an iterated version ofwhen
donext . For every instant in which constraintholds for

the most likely state, it starts programin the next instant.
is anaskconstraint on the variables of the physical plant.

This expression is equivalent to {always if thennext }.
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