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Motion planning: classical setting

Go from Start to Goal without collisions and while
respecting all robot constraints.



Motion Planning

• Is done in a continuous world and with constrained motions.

• Needs to know robot and world geometry.

• Needs to know robot and world physics.

• Must be accurate and predictive to work in practice.

Some notes: 

• More powerful motion planning simplifies the task planner.

• More accurate motion planning simplifies motion execution.

• Motion planning is limited by model accuracy and complexity.



Motion planner is part of a replanning loop

Bekris et al.



Motion planning is hard

Problem Complexity

Sofa Mover (3 DOF) O(n2+ε) not implemented

Piano Mover (6 DOF) Polynomial – no practical algorithm known

n Disks in the Plane NP-hard

n Link Planar Chain PSPACE-Complete

Generalized Mover PSPACE-Complete

Shortest Path for a Point in 3D NP-hard

Curvature Constrained  Point in 2D NP-hard

Simplified Coulomb Friction Undecidable



Exact, approximate, and heuristic methods

Method Advantage Disadvantage

Exact theoretically insightful impractical

Cell Decomposition easy does not scale

Control-Based online, very robust requires good trajectory

Potential Fields online, easy slow or fail

Sampling-based fast and effective cannot recognize impossible 
query
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Basic concepts and definitions

• Workspace

• Robot 

• State space

• Path 

• Planning Instance/Simple Setup

• Query/Problem



Workspace

•The workspace is the environment that the robot operates 
in.

•The boundary of the workspace determines the obstacles.



Robot

• The robot is defined by:

• Geometry

• Parameters or Degrees of Freedom (DOF)

• Different settings for the parameters embed the geometry in different 
ways into the workspace.



State space

• The parameter space for the robot is called the state space S.

• A point in this space is a state.



Free state space

• A state is free if the corresponding embedding of the robot’s geometry lies in 
the workspace.

• The subspace of free configurations is free state space Sfree.

• Sfree can be very complex even for seemingly simple systems.

• This complexity is the main difficulty in motion planning.



• A path is continuous mapping in C

• L is the length of the path.

• The path is collision-free if for all t

Paths

⇡ : [0, L] ! Sfree

⇡(t) 2 Sfree



Planning instance/Simple setup

• A planning instance consists of:

• Robot  (S-space and embedding).

• Workspace.

• Constraints.



Query/Problem definition

• A problem or query is

• Given two states, q0 and qf.

PROBLEM:

Determine if there is a collision-free path between q0 and qf.
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Probabilistic Roadmap Planner (PRM)

Kavraki, Svestka, Overmars and Latombe 96



PRM 

• Uses random sampling.

• Uses simple local planner.

• Builds a roadmap of the state space.



PRM 

• Illustrate with an easy planning instance/problem set up.

• Robot is a point in 2D.

• Robot moves freely.

• Simple example used for illustration only.

• Isolate primitive techniques.

• Generalize.



Point robot in 2-D

a robot state



: nodes, random states

Operation of PRM 
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Operation of PRM 

:edges, paths computed by local planner



Queries

• Given a roadmap G and query q0, qf

• Connect q0 and qf to G.

• Check to see if there is a path in G.



plan a path: 1.connect start & goal to roadmap
2.perform graph search

start

goal

Answering Queries



Primitive Techniques 

• Select Sample: (in the example) Uniform sampling to get milestones.

• Connect: (in the example) Local planner uses “straight lines.”

• Store in some data structure: (in the example) A graph.

• A roadmap is finite graph G=(V,E)

• V is a subset of           .

• (s1,s2) in E implies that the local planner found a path.

Sfree



Why use sampling?

•                is impractical to represent explicitly.

•   
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Why use sampling?

•              is impractical to represent explicitly.

• Sampling can be very efficient.

• Resulting data structure can be very compact.

Sfree



Connecting samples

• An example of a simple planner:

- Computes the straight line path between q1, q2.

- Checks to see if it is valid.

- If so, returns SUCCESS and the path.

- Otherwise, returns FAIL.

May fail often



• For states

• Use e.g., collision checking, check any bounds

• For paths 

• State validation along a path is done by recursive refinement.
• Bounds on clearance are combined with bounds on motion to cover 

the path with open balls or find a collision.

State validity checker 



: nodes, random states

Operation of PRM 
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Operation of PRM 

 feasible path computed by local planner



Completeness of PRM

• If no path exists, then PRM cannot find the path.

• But… if a path exists, it is possible PRM fails to find it.

• PRM is not complete but instead is probabilistically complete.



• Tradeoff: planner may fail with probability  
• Number of nodes/states: 

• Important: Performance related to properties of the space

ε-goodness property

Theoretical Analysis of PRM (1/2) 
[Kavraki et al 96, 98, 00, 03, 07]

VS

N ⇡ 1

✏

[log(
1

✏

) + log(
4

↵

)]

↵



• We sacrifice completeness for speed
• Probabilistic completeness
• Novel analysis and performance guarantees

• How much can the assumptions be relaxed?

Pr(failure) = f(e�cN )

Theoretical Analysis of PRM (2/2) 



Primitive techniques



Primitives 

• Select Sample: Uniform sampling is general but not the most efficient.

• Optimal selection remains elusive.

• Connect: Connect all to all is general but not efficient. 

• Neighbors
• Notion of “straight line” or other local plan needs to be adapted.

• Store efficiently
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Several sampling strategies

• Gaussian sampling [Overmars et al]: 

• Places samples close to objects.

• Distribution is Gaussian around the obstacle boundary.

• Medical-axis sampling [Amato et al].

• Bridge Test sampling for narrow corridors [Hsu et al].

• Quasi-Random sampling [LaValle et al].

• Selective sampling [Kavraki el al].

VS

Recent study confirmed it is one of the most critical parts of the 
planner [Hsu, Latombe 1998]. 
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Several connection strategies

• Nearness: Try to connect each configuration to a constant number of 
“nearby” configurations.

• nearest neighbors by kd-trees, k-NN, k-ANN

• random neighbors may be helpful

• Component technique: Only test edges which reduce the number of 
connected components in the roadmap.

Svestka, Overmars 96
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A generic sampling-based tree planner



start

goal

Sampling-based tree planner operation



start

goal

grow random tree from start

Sampling-based tree planner operation



start

goal

Sampling-based tree planner operation



start

goal

: occasionally attempt to connect tree to goal 

Sampling-based tree planner operation



start

goal

- Repeat until goal is connected to tree.
- Bi-directional trees are possible when considering only geometric constraints.

Sampling-based tree planner operation



Primitives 

• Select Sample

• Expand from the sample 

• Store efficiently



Rapidly Exploring Random Trees (RRT)

• Uses proximity query to guide construction (Voronoi Bias).

• Uses propagation instead of connection.

• Powerful heuristic for single-query planning.

• Bi-directional search can be implemented.

[Lavalle, Kuffer 1999, 2000]



Expansive Trees (EST and SBL) 

• EST: Uses density of nodes to guide expansion (density bias). [Hsu and Latombe, 
1997, 1999]

• SBL: Uses some coverage estimates and density of nodes. [Sanchez and 
Latombe, 2001]  



KPIECE 

• Keeps tract of coverage by using discretization and by distinguishing the 
boundary from the covered space.

• Keeping of coverage can be done in a hierarchical fashion.

• Projections my be used.

[Șucan, Kavraki 2008]



SyCLoP 

• Using a discrete lead to help guide the expansion of the tree

Plaku and Kavraki, 2008



Performance improvements for trees

• Bi-directional search.

• Lazy collision checking.

• Goal biasing.

• Accounting for constrained manifolds.

• Employing motion primitives.

• and many others.



Planning with Dynamics:
Trees offer an advantage
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Physical Systems Planning

Space of controls is defined

or Equations



Physical system planning

Given 

1. an initial state q0 ∈ Q

2. a goal set G ⊂ Q

The discrete physical systems planning problem is to compute a                                   
sequence u0, …, uN such that:

F(qi,ui) = qi+1

and qN+1 ∈ G is contained in the goal set.



Planning with dynamics

• Adding dynamics is essential to increase physical realism.

• Techniques from control theory can be used to create better paths or reduce 
differential equation integrations.

• Metrics tend to work poorly.

• Efficient planning for systems with dynamics is still fairly open: sampling-
based tree planners offer an advantage.



Primitives 

• Select Sample

• Expand from the sample 

• Store efficiently

These primitives are combined with various optimizations.



EST [Hsu et al.’97, ‘00]
RRT [Kuffner, LaValle ’98]
RRT-Connect [Kuffner, LaValle '00]
SBL  [Sanchez, Latombe ’01]
Guided EST [Phillips et al. ‘03]
PDRRT [Ranganathan, Koenig '04]
SRT [Plaku et al. '05]
DDRRT [Yershova et al. ’05]
ADDRRT [Jaillet et al. ’05]
RRT-Blossom [Kalisiak, van Panne ’06]
PDST [Ladd, Kavraki  ‘06]
Utility RRT [Burns, Brock ’07]
GRIP [Bekris, Kavraki ’07]
Multiparticle RRT [Zucker et al. ’07]
TC-RRT [Stillman et al. '07]
RRT-JT [Vande Wege et al '07]
DSLX [Plaku, Kavraki, Vardi '08]
KPIECE [Șucan, Kavraki '08]

RPDST [Tsianos, Kavraki '08]
BiSpace [Diankov et al. '08]
GRRT [Chakravorty, Kumar '09]
IKBiRRT [Berenson et al.'09]
CBiRRT [Berenson et al.'09]
J+RRT [Vahrenkamp '09]
RRT* [Karaman et al, 10]
and many others

Variations of tree sampling-based planners



Sampling-based planning (many possibilities)

• Core operations

• state sampling

• connection strategy

• ......

• Common optimizations 

• bi-directional 

• goal-biasing 

• .....
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Need for a systematized approach: OMPL 



Benefits

• A repository of planners: choose the right planner and right parameters for 
that planner.

• Compare new planners to existing ones.

• Develop significantly more complex specialized planners.

• Enable challenging research.

• Support education of new scientists.



Challenges

• Uncertainty.

• Manipulation of rigid and flexible objects.

• Parallel Linkages.

• Dynamics.

• Hybrid planning.

• Real-time planning.

• and other.



THANK YOU 
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