# **Sampling-Based Robot Motion Planning**

Lydia Kavraki Department of Computer Science Rice University Houston, TX USA

# Motion planning: classical setting



# **Motion Planning**

- Is done in a continuous world and with constrained motions.
- Needs to know robot and world geometry.
- Needs to know robot and world physics.
- Must be accurate and predictive to work in practice.

Some notes:

- More powerful motion planning simplifies the task planner.
- More accurate motion planning simplifies motion execution.
- Motion planning is limited by model accuracy and complexity.

# Motion planner is part of a replanning loop

Bekris et al.

# Motion planning is hard

| Problem                           | Complexity                                |
|-----------------------------------|-------------------------------------------|
| Sofa Mover (3 DOF)                | $O(n^{2+\epsilon})$ not implemented       |
| Piano Mover (6 DOF)               | Polynomial – no practical algorithm known |
| n Disks in the Plane              | NP-hard                                   |
| n Link Planar Chain               | PSPACE-Complete                           |
| Generalized Mover                 | PSPACE-Complete                           |
| Shortest Path for a Point in 3D   | NP-hard                                   |
| Curvature Constrained Point in 2D | NP-hard                                   |
| Simplified Coulomb Friction       | Undecidable                               |

## Exact, approximate, and heuristic methods

| Method             | Advantage                | Disadvantage                         |
|--------------------|--------------------------|--------------------------------------|
| Exact              | theoretically insightful | impractical                          |
| Cell Decomposition | easy                     | does not scale                       |
| Control-Based      | online, very robust      | requires good trajectory             |
| Potential Fields   | online, easy             | slow or fail                         |
| Sampling-based     | fast and effective       | cannot recognize impossible<br>query |

## Exact, approximate, and heuristic methods

| Method             | Advantage                | Disadvantage                         |
|--------------------|--------------------------|--------------------------------------|
| Exact              | theoretically insightful | impractical                          |
| Cell Decomposition | easy                     | does not scale                       |
| Control-Based      | online, very robust      | requires good trajectory             |
| Potential Fields   | online, easy             | slow or fail                         |
| Sampling-based     | fast and effective       | cannot recognize impossible<br>query |

# **Outline of this talk**

- Basic concepts and definitions.
- Examples of sampling-based planners:
  - Roadmap planner
  - Tree-based planner
- Underlying key components.
- OMPL and future challenges in motion planning.

# **Outline of this talk**

- Basic concepts and definitions.
- Examples of sampling-based planners:
  - Roadmap planner
  - Tree-based planner
- Underlying key components.
- OMPL and future challenges in motion planning.

## **Basic concepts and definitions**

- Workspace
- Robot
- State space
- Path
- Planning Instance/Simple Setup
- Query/Problem

# Workspace

- The workspace is the environment that the robot operates in.
- The boundary of the workspace determines the obstacles.

# Robot

- The robot is defined by:
  - Geometry
  - Parameters or Degrees of Freedom (DOF)
    - Different settings for the parameters embed the geometry in different ways into the workspace.

### **State space**

• The parameter space for the robot is called the state space S.

• A point in this space is a state.

#### Free state space

- A state is free if the corresponding embedding of the robot's geometry lies in the workspace.
- The subspace of free configurations is free state space  $S_{free}$ .

- S<sub>free</sub> can be very complex even for seemingly simple systems.
- This complexity is the main difficulty in motion planning.

### Paths

• A path is continuous mapping in C

$$\pi: [0, L] \to S_{free}$$

- L is the length of the path.
- The path is collision-free if for all t

$$\pi(t) \in S_{free}$$

### **Planning instance/Simple setup**

- A planning instance consists of:
  - Robot (S-space and embedding).
  - Workspace.
  - Constraints.

# **Query/Problem definition**

- A problem or query is
  - Given two states, q<sub>0</sub> and q<sub>f</sub>.

PROBLEM:

Determine if there is a collision-free path between  $q_0$  and  $q_f$ .

# **Outline of this talk**

- Basic concepts and definitions.
- Examples of sampling-based planners:
  - Roadmap planner
  - Tree-based planner
- Underlying key components.
- OMPL and future challenges in motion planning.

### **Probabilistic Roadmap Planner (PRM)**

Kavraki, Svestka, Overmars and Latombe 96

#### PRM

- Uses random sampling.
- Uses simple local planner.
- Builds a roadmap of the state space.



### PRM

- Illustrate with an easy planning instance/problem set up.
  - Robot is a point in 2D.
  - Robot moves freely.
  - Simple example used for illustration only.

• Isolate primitive techniques.

• Generalize.

#### **Point robot in 2-D**



 $\bigcirc$ 



: nodes, random states



:edges, paths computed by local planner



:edges, paths computed by local planner



:edges, paths computed by local planner

## Queries

- Given a roadmap G and query  $q_0$ ,  $q_f$ 
  - Connect  $q_0$  and  $q_f$  to G.
  - Check to see if there is a path in G.

### **Answering Queries**



plan a path:

connect start & goal to roadmap
perform graph search

## **Primitive Techniques**

- Select Sample: (in the example) Uniform sampling to get milestones.
- Connect: (in the example) Local planner uses "straight lines."
- Store in some data structure: (in the example) A graph.
  - A roadmap is finite graph G=(V,E)
  - V is a subset of  $S_{free}$ .
  - $(s_1, s_2)$  in E implies that the local planner found a path.

# Why use sampling?

•  $S_{free}$  is impractical to represent explicitly.



# Why use sampling?

•  $S_{free}$  is impractical to represent explicitly.



# Why use sampling?

- $S_{free}$  is impractical to represent explicitly.
- Sampling can be very efficient.
- Resulting data structure can be very compact.

## **Connecting samples**

- An example of a simple planner:
  - Computes the straight line path between q1, q2.
  - Checks to see if it is valid.
  - If so, returns SUCCESS and the path.
  - Otherwise, returns FAIL.



# State validity checker

- For states
  - Use e.g., collision checking, check any bounds
- For paths
  - State validation along a path is done by recursive refinement.
  - Bounds on clearance are combined with bounds on motion to cover the path with open balls or find a collision.



 $\bigcirc$ 



: nodes, random states






:edges, paths computed by local planner



 $\bigcirc$ 



---- feasible path computed by local planner



---- feasible path computed by local planner



---- feasible path computed by local planner

## **Completeness of PRM**

• If no path exists, then PRM cannot find the path.

• But... if a path exists, it is possible PRM fails to find it.

• PRM is not complete but instead is probabilistically complete.

# **Theoretical Analysis of PRM (1/2)**



[Kavraki et al 96, 98, 00, 03, 07]

ε-goodness property



- Tradeoff: planner may fail with probability  $\alpha$
- Number of nodes/states:

$$N \approx \frac{1}{\epsilon} \left[ log(\frac{1}{\epsilon}) + log(\frac{4}{\alpha}) \right]$$

• Important: Performance related to properties of the space

# Theoretical Analysis of PRM (2/2)

- We sacrifice completeness for speed
- Probabilistic completeness
- Novel analysis and performance guarantees



$$Pr(failure) = f(e^{-cN})$$

• How much can the assumptions be relaxed?

## **Primitive techniques**

## **Primitives**

- Select Sample: Uniform sampling is general but not the most efficient.
  - Optimal selection remains elusive.
- **Connect:** Connect all to all is general but not efficient.
  - Neighbors
  - Notion of "straight line" or other local plan needs to be adapted.
- Store efficiently

## **Primitives**

- Select Sample: Uniform sampling is general but not the most efficient.
  - Optimal selection remains elusive.
- **Connect:** Connect all to all is general but not efficient.
  - Neighbors
  - Notion of "straight line" or other local plan needs to be adapted.
- Store efficiently

# **Several sampling strategies**

• Gaussian sampling [Overmars et al]:



- Places samples close to objects.
- Distribution is Gaussian around the obstacle boundary.
- Medical-axis sampling [Amato et al].
- Bridge Test sampling for narrow corridors [Hsu et al].
- Quasi-Random sampling [LaValle et al].
- Selective sampling [Kavraki el al].

Recent study confirmed it is one of the most critical parts of the planner [Hsu, Latombe 1998].

## **Primitives**

- Select Sample: Uniform sampling is general but not the most efficient.
  - Optimal selection remains elusive.
- **Connect:** Connect all to all is general but not efficient.
  - Neighbors
  - Notion of "straight line" or other local plan needs to be adapted.
- Store efficiently

## **Several connection strategies**

- Nearness: Try to connect each configuration to a constant number of "nearby" configurations.
  - nearest neighbors by kd-trees, k-NN, k-ANN
  - random neighbors may be helpful
- Component technique: Only test edges which reduce the number of connected components in the roadmap.

Svestka, Overmars 96

## **Primitives**

- Select Sample: Uniform sampling is general but not the most efficient.
  - Optimal selection remains elusive.
- **Connect:** Connect all to all is general but not efficient.
  - Neighbors
  - Notion of "straight line" or other local plan needs to be adapted.
- Store efficiently

## **Outline of this talk**

- Basic concepts and definitions.
- Examples of sampling-based planners:
  - Roadmap planner
  - Tree-based planner
- Underlying key components.
- OMPL and future challenges in motion planning.

## A generic sampling-based tree planner





grow random tree from start





: occasionally attempt to connect tree to goal



- Repeat until **goal** is connected to tree.
- Bi-directional trees are possible when considering only geometric constraints.

## **Primitives**

- Select Sample
- Expand from the sample
- Store efficiently

# **Rapidly Exploring Random Trees (RRT)**

- Uses proximity query to guide construction (Voronoi Bias).
- Uses propagation instead of connection.
- Powerful heuristic for single-query planning.
- Bi-directional search can be implemented.



[Lavalle, Kuffer 1999, 2000]

# **Expansive Trees (EST and SBL)**

- EST: Uses density of nodes to guide expansion (density bias). [Hsu and Latombe, 1997, 1999]
- SBL: Uses some coverage estimates and density of nodes. [Sanchez and Latombe, 2001]



# **KPIECE**

- Keeps tract of coverage by using discretization and by distinguishing the boundary from the covered space.
- Keeping of coverage can be done in a hierarchical fashion.
- Projections my be used.



# SyCLoP

• Using a discrete lead to help guide the expansion of the tree



Plaku and Kavraki, 2008

## **Performance improvements for trees**

- Bi-directional search.
- Lazy collision checking.
- Goal biasing.
- Accounting for constrained manifolds.
- Employing motion primitives.
- and many others.

Planning with Dynamics: Trees offer an advantage

Bekris et al.





Bekris et al.



Bekris et al.





Bekris et al.



Bekris et al.

## **Physical Systems Planning**



Space of controls is defined

### **Physical system planning**

Given

1. an initial state  $q_0 \in Q$ 

2. a goal set  $G \subset Q$ 

The discrete physical systems planning problem is to compute a sequence  $u_0, ..., u_N$  such that:

 $\mathsf{F}(\mathsf{q}_i,\mathsf{u}_i)=\mathsf{q}_{i+1}$ 

and  $q_{N+1} \in G$  is contained in the goal set.
### **Planning with dynamics**

- Adding dynamics is essential to increase physical realism.
- Techniques from control theory can be used to create better paths or reduce differential equation integrations.
- Metrics tend to work poorly.
- Efficient planning for systems with dynamics is still fairly open: samplingbased tree planners offer an advantage.

#### **Primitives**

- Select Sample
- Expand from the sample
- Store efficiently

These primitives are combined with various optimizations.

#### Variations of tree sampling-based planners

EST [Hsu et al.'97, '00] RRT [Kuffner, LaValle '98] RRT-Connect [Kuffner, LaValle '00] SBL [Sanchez, Latombe '01] Guided EST [Phillips et al. '03] PDRRT [Ranganathan, Koenig '04] SRT [Plaku et al. '05] DDRRT [Yershova et al. '05] ADDRRT [Jaillet et al. '05] RRT-Blossom [Kalisiak, van Panne '06] PDST [Ladd, Kavraki '06] Utility RRT [Burns, Brock '07] GRIP [Bekris, Kavraki '07] Multiparticle RRT [Zucker et al. '07] TC-RRT [Stillman et al. '07] RRT-JT [Vande Wege et al '07] DSLX [Plaku, Kavraki, Vardi '08] KPIECE [Şucan, Kavraki '08]

RPDST [Tsianos, Kavraki '08] BiSpace [Diankov et al. '08] GRRT [Chakravorty, Kumar '09] IKBiRRT [Berenson et al.'09] CBiRRT [Berenson et al.'09] J+RRT [Vahrenkamp '09] RRT\* [Karaman et al, 10] and many others



# Sampling-based planning (many possibilities)

- Core operations
  - state sampling
  - connection strategy
  - •
- Common optimizations
  - bi-directional
  - goal-biasing
  - •

# Sampling-based planning (many possibilities)

- Core operations
  - state sampling
  - connection strategy
  - •
- Common optimizations
  - bi-directional
  - goal-biasing



•

#### Need for a systematized approach: OMPL

#### **Benefits**

- A repository of planners: choose the right planner and right parameters for that planner.
- Compare new planners to existing ones.
- Develop significantly more complex specialized planners.
- Enable challenging research.
- Support education of new scientists.

# Challenges

- Uncertainty.
- Manipulation of rigid and flexible objects.
- Parallel Linkages.
- Dynamics.
- Hybrid planning.
- Real-time planning.
- and other.

# THANK YOU

Acknowledgements: Work at the Kavraki Lab on sampling-based planners has been supported by NSF