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Machine Learning Lab Freiburg - Real Life Projects

• Neural forecasting and trading systems. Customers: Axel-Springer
AG since 1997, HeLaBa 1995-1999, ABP 2006

• Neural control systems. Motor control (1996-1998), Active
damping system (2006) customers: German car companies

• Neural Slot Car Racer (Harting, Hannover Fair 2008, 2009)

• Machine Learning in autonomous robots (RoboCup, since 1999)

⇒ Learning components are embedded in large software systems



Machine Learning Lab Freiburg

’Future computer programs will contain a growing part of ’intelligent’

software modules that are not conventionally programmed but that

are learned either from data provided by the user, or from data that

the program autonomously collects during its use.’

develop software systems, that learn from data or own experience



Machine Learning Lab Freiburg

’Future computer programs will contain a growing part of ’intelligent’

software modules that are not conventionally programmed but that

are learned either from data provided by the user, or from data that

the program autonomously collects during its use.’

develop software systems, that learn from data or own experience

research on fast, robust, and (data-) efficient learning methods
for supervised, unsupervised and reinforcement learning scenarios

develop concepts for embedding learning components
in complex software solutions



Our goals of a learning controller

Autonomously learn a complex behaviour from scratch

• no control knowledge, no initial policy

• no process knowledge (no model)

• high quality

Reinforcement Learning: learning from reward and punishment

example: riding a bicycle



Closed loop control and typical applications

Regeleinrichtung RegelstreckeStellgrößeFührungsgröße

Rückführung

StörgrößeStörgröße

Regelgröße

• temperature control

• position control

• active suspension control

• robot control

• . . .

General control loop implentation realized by open source software
CLS2(CLSquare)



Reinforcement Learning (RL) for technical process

control

Challenges:

• model free

• non-linear, noisy

• continous states, continuos actions

• considerable number of state variables (typ. 5-10)

• considerable trajectory length

• high quality control behaviour

• typical: set-point regulation y 7→ yd

t
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Goals of the talk

• discuss value function based approaches as one methodology to
tackle real world RL problems

• in particular, focus on Neural Fitted Q Iteration (NFQ) as an
efficient, model-free method

• discuss practical issues in setting up the learning tasks



Overview

• Review: value function based Reinforcement Learning

• Choosing degrees of freedom: immediate costs, discounting, states,
actions

• Efficient learning: Neural fitted Q iteration

• Drifting values problem: Hint-to-Goal and Min-Q heuristics

• Generation/ reuse of training data

• Improving Accuracy

• Continuous actions

• Case studies



I

Value Function based RL



Sequential Decision Making

Goal

Examples:
Chess, Checkers (Samuel, 1959), Backgammon (Tesauro, 92)

Cart-Pole-Balancing (AHC/ ACE (Barto, Sutton, Anderson, 1983)), Robotics
and control, . . .



Three Steps

⇒Describe environment as a Markov Decision Process (MDP)

⇒Formulate learning task as a dynamic optimization problem

⇒Solve dynamic optimization problem by dynamic programming
methods



1. Describing the environment

Goal

S: (finite) set of states
A: (finite) set of actions

Behaviour of the environment (transition) model
p : S × S ×A→ [0, 1]
p(s′, s, a) Probability distribution of transition

Markov property: Transition only depends on current state and action

Pr(st+1|st, at) = Pr(st+1|st, at, st−1, at−1, st−2, at−2, . . .)



2. Formulation of the learning task

every transition emits transition costs,
’immediate costs’, c : S ×A→ ℜ
(sometimes also called ’immediate reward’, r)

1

2



2. Formulation of the learning task

every transition emits transition costs,
’immediate costs’, c : S ×A→ ℜ
(sometimes also called ’immediate reward’, r)

1
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Now, an agent policy π : S → A can be
evaluated (and judged):
Consider pathcosts:
Jπ(s) =

∑

t c(st, π(st)), s0 = s

Wanted: optimal policy π∗ : S → A
where Jπ∗

(s) = minπ{
∑

t c(st, π(st))|s0 = s}

2

1
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⇒Additive (path-)costs allow to consider all events during trajectories

⇒This formulation cares for the complete temporal behaviour of the
system



Choice of immediate cost function c(·) specifies policy to be learned

Example:

c(s) =







0 , if s success (s ∈ Goal)
1000 , if s failure (s ∈ Failure)

1 , else

Goal

Jπ(sstart) = 12

Jπ(sstart) = 1004

⇒specification of requested policy by c(·) is simple!



3. Solving the optimization problem

For the optimal path costs it is known that

J∗(s) = min
a
{
∑

s′∈S

p(s, s′, a) (c(s, a) + J∗(f(s, a)))}

(Principle of Optimality (Bellman, 1959))

⇒Can we compute J∗ (we will see why, soon)?



Computing J∗: the value iteration (VI) algorithm

Start with arbitrary J0(s)

for all states s :Jk+1(s) :=mina∈A{c(s, a)+Jk(f(s, a))}
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Computing J∗: the value iteration (VI) algorithm

Start with arbitrary J0(s)

for all states s :Jk+1(s) :=mina∈A{c(s, a)+Jk(f(s, a))}
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⇒Can be extended straight-forward to the stochastic case



Convergence of value iteration

Value iteration converges under certain assumptions, i.e. we have

limk→∞Jk = J∗

⇒Discounted problems: Jπ∗

(s) = minπ{
∑

t γtc(st, π(st))|s0 = s}
where 0 ≤ γ < 1 (contraction mapping)

⇒Stochastic shortest path problems:

• there exists an absorbing terminal state with zero costs

• there exists a ’proper’ policy (a policy that has a non-zero chance
to finally reach the terminal state)

• every non-proper policy has infinite path costs for at least one state
alternative, stronger assumption: c(s, u) > 0 if s is not a goal state



Ok, now we have J∗

⇒when J∗ is known, then we also know an optimal policy:

π∗(s) ∈ arg mina∈A{c(s, a) + J∗(f(s, a))}
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Reinforcement Learning

Problems of Value Iteration:

for all s ∈ S :Jk+1(s) = mina∈A{c(s, a) + Jk(f(s, a))}

problems:

• Size of S (Chess, robotics, . . . ) ⇒ learning time, storage?

• ’model’ (transition behaviour) f(s, a) or p(s′, s, a) must be known!



Reinforcement Learning

Problems of Value Iteration:

for all s ∈ S :Jk+1(s) = mina∈A{c(s, a) + Jk(f(s, a))}

problems:

• Size of S (Chess, robotics, . . . ) ⇒ learning time, storage?

• ’model’ (transition behaviour) f(s, a) or p(s′, s, a) must be known!

Reinforcement Learning is dynamic programming for very large state
spaces and/ or model-free tasks



Important contributions - Overview

• Real Time Dynamic Programming
(Barto, Sutton, Watkins, 1989)

• Model-free learning (Q-Learning,(Watkins, 1989))

• neural representation of value function (or alternative function
approximators)



Real Time Dynamic Programming (Barto, Sutton, Watkins, 1989)

Idea:

instead For all s ∈ S now For some s ∈ S . . .
⇒concentrating on the ’relevant’ parts of state space

Goal



Learning without a model: Q-Learning (Watkins, 1989)

Idea Represent expected path-costs as a function of state-action pairs:

Q∗(s, a) :=
∑

s′∈S

p(s′, s, a)(c(s, a) + J∗(s′))

• optimal Q-function can be learned by sampling state transitions
s, a→ s′ only (no transition model required)

Qk+1(s, a) := (1− α)Qk(s, a) + α (c(s, a) + min
a′∈A(s′)

Qk(s
′, a′))

• also, action selection is model-free: π∗(s) = arg minQ∗(s, a)

• convergence properties similar to value iteration + every
state-action pair has to be visited infinitely often

• Q-function is updated after every state transition



Representation of the path-costs in a function

approximator

Idea: neural representation of value function (or alternative function
approximators) (Neuro Dynamic Programming (Bertsekas, 1987))
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⇒few parameters (here: weights) specify value function for a large
state space ⇒learning by gradient descent:
∂E

∂wij
= ∂(minb Q(s′,b)−c(s,a)−Q(s,a))2

∂wij



Consequences from theory for the learning controller

setup

• Markov poperty: state information s must be ’rich enough’ to fulfill
the Markov property. If state information is not known, or cannot
be measured, approximations might be used, e.g.

˙pos(t) ≈ pos(t)−pos(t−△t)
△t

. Since no explicit model is built, one has

a lot of possibilities for the choice of the state information (e.g.
might be redundant), as long as the main information is captured.
A standard way might be to just use differences with different time
lags.

• Existence of a proper policy: action sets must be ’rich enough’,
that a proper policy exists. However, an explicit proper policy need
not to be known in advance

• Discounting: in principle, using a discount factor < 1 leads to a
framework, where convergence conditions are more relaxed.
However, it will also influence the type of optimal solution one
gets. Using no discounting (i.e γ = 1) therefore might be closer to
the intention with respect to the quality of the solution.



• immediate costs:

– should be derived from the type of solution one desires, e.g.
’minimum-time’. Typically should not be misused as a local
pointer to the goal, such as e.g. ’distance to the goal’ - unless
’minimizing the sum of distances to the goal along the
trajectory’ is the type of solution one expects.

– can be chosen very flexibly, e.g. no restriction to quadratic costs
or to being diffentiable, ...

– constraints: if hard constraints (e.g. damaging the robot) are
violated, trajectory terminates and large terminal path costs are
given. Terminal path costs should be larger than largest path
costs of a trajectory leading to goal

– concrete choice depends on the type of problem. In technical
control problems, two types are of particular interest:
a. goal states with termination property (TG: Termination at
goal)
b. goal states without termination property (NoTG:
Non-termination at goal)



Immediate costs (I)

Goal states with termination property (TG)

Example mobile robot positioning: driving the robot to a certain
position. By reaching the goal, the control task is finished.

Choice of immediate costs:

• for non-goal states: c(s, a) > 0

• if goal is reached terminal path costs of 0 arise. Trajectory
terminates.
Q(s, a)← c(s, a) + J(s+) = c(s, a) + 0.



Immediate costs (II)

Goal states with non termination property (NoTG)

Example robot arm positioning: move the finger tips to a certain
position and keep them there, even under external disturbances. The
control task continues forever.

This is the typical situation faced by so-called ’set-point regulation
problems’, where a system output y should be controlled to reach and
stay at a certain target value yd

t
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Choice of immediate costs:

• for non-goal states: c(s, a) > 0

• for goal states: c(s, a) = 0. No termination.
Q(s, a)← c(s, a) + J(s+) = 0 + minb Q(s+, b).



Immediate costs (III)
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• For set-point regulation problems, the goal region is typically
chosen, that the target value is reached with some tolerance δ, i.e.
c(s, u) = 0⇔ y ∈ [yd − δ, yd + δ]

• For non-discounted probelms, requires that a policy exists, that is
able to keep the system in the goal area (’proper’ policy). Policy
need not to be known in advance. This influences the choice of the
action set and the size of the goal region.

• Note: Control task is more difficult than in TG problems. Typically
trade of between going fast to target region and keeping the
system there.

• Care must be taken, if function approximation is used → ’drifting
values problem’ (see later)



Immediate costs (IV)

A very general framework is to use constant costs outside the goal
region, e.g.

c(s, u) = 1, if s not in goal; c(s, u) = 0, else

This leads to a minimum time control policy, where the time outside
the target region is minimized.

• very general formulation that requires no prior knowledge about the
process behaviour

• in combination with neural networks with sigmoidal outputs, the
immediate costs are scaled by a small factor, such that the expected
pathcosts for successful policies are < 1, e.g. c(s, u) = 0.01



Control of a chemical reaction by heating/ cooling

control: u external heating/ cooling
x1 concentration

measured: x2 temperature in reactor
goal: keep a certain temperature

to get a desired concentration x2 = -bx1 + c g(x1,x2) + du

.

.x1 = -ax1 + g(x1,x2)

g(x1,x2)=(1-x1) d e-(-k/1+x2)

Analytical nonlinear controller

u = −k(y) y = −[C0 y + C1 y e
−

−ǫ
1+y + C2 y

e
−

−ǫ
1+y − e

−
−ǫ

1+yR

y − yR

]



Neural RL control

• Actions: A =
{−0.05,+0.05, 0}

• states: concentration x1

temperature x2

• neural value function: MLP, 3-
20-1

• goal: x2 − xd
2 = △x2 ≈ 0

• Setpoint regulation: NoTG
framework,

c(s, a) :=

{

0 , |△x2| < δ

1 , else



Learning

untrained
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Comparison Analytical - Neural
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red: neural RL controller



Comparison Analytical - Neural. Policy
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Intermediate summary

• needs no (analytical or whatsoever) prior model of the plant

• controller quality high

• high flexibilty to specify controller properties

• choice of states representation, actions, immediate costs,
discounting is reasonably simple

• open questions:

– lack of efficiency (often, ≈ 1E5 to 1E6 episodes required)
– continuous actions



II

Neural Fitted Q Iteration (NFQ)



Neural Networks (Multilayer Perceptrons, MLPs) as

Value Functions

+ good generalisation (’global’ fitting), general function approximator

- can ’forget’ values at arbitrary points (in contrast to a local scheme
as a table, or a grid, or RBF network)

Idea: to prevent forgetting, store crucial information explicitly (in
contrast to TD-learning)
Here, ’crucial information’ means the transition tuples (s, a, s′)

⇒ update neural value function at all transition tuples concurrently:
Neural Fitted Q Iteration (Riedmiller, 2005)

Idea in the spirit of ’Fitted Value Iteration’ (Gordon, 1995) and ’Fitted Q
Iteration’ (Ormoneit, Sen, 2002; Ernst, 2005)



Neural Fitted Q Iteration NFQ (Riedmiller 2005)

Qk ∈ F : neural approximation of Q-value function at stage k

(s1, a1, s
′
1), . . . , (sN , aN , s′N) are sampled transitions

For each transition sample do

Q̂(si, ai) := c(si, ai) + γminaQk(s
′
i, a)

Compute next iterate Qk+1 by

Qk+1 = arg minf∈F

N
∑

i=1

(f(si, ai)− Q̂(si, ai))
2



Neural Fitted Q Iteration NFQ (Riedmiller 2005)

Qk ∈ F : neural approximation of Q-value function at stage k

(s1, a1, s
′
1), . . . , (sN , aN , s′N) are sampled transitions

For each transition sample do

Q̂(si, ai) := c(si, ai) + γminaQk(s
′
i, a)

Compute next iterate Qk+1 by

Qk+1 = arg minf∈F

N
∑

i=1

(f(si, ai)− Q̂(si, ai))
2

Reinforcement Learning becomes solving a series of supervised
learning problems (offline!) on sampled transition data. Batch
learning: Efficient and robust neural training methods exists (e.g.
Rprop, (Riedmiller, 1992))



Neural Fitted Q Iteration

1. sample transitions (si, ai, s
′
i, ri), i = 1 . . . N

• randomly
• ’greedy sampling’: doing actual trajectories greedily exploiting

Qk

• according to some other policy
• ...

2. compute training targets
Q̂(si, ai) := c(si, ai) + γminaQk(s

′
i, a), i = 1 . . . N

3. train MLP to approximate Q̂ using Rprop (Riedmiller, 1992)

4. optionally use special extensions, e.g. additional training patterns
(’hint-to-goal’)



NFQ

• model-free: assumes no a priori known model of the plant

• highly efficient with respect to the number of data points collected

• applicable to real systems directly (see examples)

• Rprop is fast and very robust with respect to parameter choice. Of
course, other supervised learning algorithms can be used

• Instead of MLPs, other regression methods can be used (e.g.
Gaussian processes (Deisenroth, Rasmussen, Peters), Randomized trees (Ernst

et.al): Fitted Q Iteration framework (Ernst et. al, 2005)



Neural Fitted Q Iteration

NFQ main() {
input: a set of transition samples D; output: Q-value function QN

k=0
init MLP() → Q0;
Do {

generate pattern set P = {(inputl, targetl), l = 1, . . . ,#D} where:
inputl = sl, ul,
targetl = c(sl, ul, s′l) + γ minbQk(s

′l, b)
Rprop training(P ) → Qk+1

k:= k+1
} While (k < N)



CartPole Regulation

’control a pole mounted on a cart avoiding failure of pole’
4 dim, constraints (boundaries of track). two actions ±10N .

’Classical’ balancing benchmark: prevent pole from falling starting
from upright position (avoidance task).

Here: regulator task: Regulate cart position with pole uprigtht,
starting from various initial states

starting states: position ±1.0m, angle ±20o.
target region: position 0± 0.05m, angle 0± 3o



CartPole - NFQ results

NFQ (5-5-5-1-net), average over 20 experiments, data-acquisition:
iterative-greedy (max episode length: 100)

First successful policy
episodes cycles interaction time costs

average 197.3 14439.8 4m49s 319.1
Best policy found (within 500 episodes)

episodes cycles interaction time costs
average 354.0 28821.1 9m 36s 132.9

Learning performance reference:

2 neural networks, online (modelbased): > 100, 000 episodes (Riedmiller,

1996)

Q-table (50x50x50x50): > 2, 000, 000 episodes

Controller performance reference:

linear controller: avg. cycles out of target region: 405.2.



Pole (avoidance)

Avoidance task: balancing a pole, noise

2 dim, constraints (boundaries of track). two actions ±50N .
avoid failure angle > 90o

Sampling: random trajectories from upright position

Success: Balancing for ≥ 3000 cycles



Pole (avoidance) - NFQ

NN: 3-5-5-1 (like in cart-pole).
# random episodes successful learning trials

50 23/50 (46%)
100 44/50 (88 %)
150 48/50 (96 %)
200 50/50 (100 %)
300 50/50 (100 %)
400 50/50 (100 %)

Benchmark used for LSPI in (Lagoudakis, Parr, 2003)

Achieved approx 99% success when using 1000 random episodes for
training.



Acquisition of transition data

All information about system behaviour is captured in the transition
tuples (s, a, s′). The information within the tuples is independent of
the policy, with which it is collected.

Therefore, transistion data can be collected in various ways:

• randomly

• by greedily exploiting the current Q-function

• by sampling according to a prior policy

• by learning a different policy first. Example: learning to swing-up a
pole. Reuse data to learn to balance
learning to swing-up a cart-pole system. Reuse data to do
suspension



Example: Control a robot to a target position

• actions: drive back and forth
with different speeds

• task: reach and keep a position
as fast as possible

• problem: be fast but avoid
overshooting

• type of problem: set-point
regulation ⇒ NoTG

• learned directly on a real robot
in less than 100 episodes



III

Practical aspects of NFQ



The ’Drifting Q-values’ Problem

• in NoTG (no terminal goal) problems, no explicit terminal states
exist with known pathcosts of 0 (⇒ ’no anchor’)

• for all states (also for goal states) the same update rule is used:

Q(s, a)← c(s, a) + J(s+) = c(s, a) + min
b

Q(s+, b)

In the minimum case, c(s, u) = 0 and the Q-value is set to the
path costs of its successor.
In all other cases, the Q-value is increased by c(s, u)

• by the generalisation property of MLPs, all the values therefore
tend to increase and finally, the Q-value of all states is ≈ 1.

• Two methods:

– forcing the output values to be 0 at some a priori determined
states by introducing artificial training patterns (’hint-to-goal’
(HTG) heuristic)

– actively driving all outputs back against 0 (’Qmin’-heuristic)



Drifting Q-values: Hint-to-Goal heuristic

• Motivation: We assume that a proper policy exists (not necessarily
known), that is able to keep the process in the goal region, where
each transition causes zero immediate costs.

• then, for some states within the goal region we know, that
J∗(s) = 0.

• Often, states for which the above is true, can be easily guessed a
priori (e.g. being in the centre of the goal area)

• Idea: generate artificial training patterns s, a, with potential target
costs 0, and set their target value to 0



Drift of Q-Function - Qmin

HTG heuristic works well for many problems, but to define the
’hint-to-goal’ input pattern, all state variable values and all actions
must be known a priori.

Sometimes, this is not the case in a practical application.

Idea of Qmin heuristic:

• minimum value of Q̂min in training set is a estimate for recent drift
in all Q-values

• correct the target values with this estimate:

Qt′ = Qt − Q̂min

In practice, the Qmin heuristic has proven to be highly effective



Drifting Q-values: appyling anti-drift methods

Example Cart-Pole Balancing. No Anti-Drift:
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Example: Control of a real cart pole system

good: pole stands upright and cart is at desired position

bad: cart hits boundary

NFQ setup:

• actions ±12V, 0V

• HTG-heuristic at input state (0,0,0,0)

• 5-20-20-1 MLP

• speed and angular velocity approximated by
differences

Special challenges:

• learn directly on real system

• no model, no simulation

• learn without human interaction



Improving Accuracy

Problem: the current standard choice of the cost-function is looking
for a policy, that keeps the plant output within a tolerated region
yd ± δ: c(s, u) = 0⇔ y ∈ [yd − δ, yd + δ]

trade-off choosing δ:

• large enough, such that system output can be kept within region

• as small as possible, such that accuracy is as good as possible

⇒ difficult to determine a priori.
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Example: Learned set point regulation using standard

cost function
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Example: Control to a single set point. Controller is optimal with
respect to specified cost function.



Improving accuracy: alternative immediate cost

formulation

Idea: using a smoothed version of the immediate cost function

c(s, u) = c(s)

= tanh2(|s− sd| ∗ w) ∗ C

w = tanh−1(

√

(0.95)

δ
)

Zustand

95%

0

yd

δ
C

Note: might require slight discounting, since c(s, u) = 0 only if y = yd



Example: Learned set point regulation using tanh()2
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Example: Control to a single set point. Using tanh()2, the control
accuracy is significantly improved



IV

Case studies



Magnetic Floating
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Magnetic Floating: Learning task setup

Lasersensor

i

u

0 mm

13 mm

Stahlkugel

R

Spannungsquelle
regelbare

PC

Stahlplatte

Spule

ḋ

d

d

State 4 dimensional d position ball

ḋ speed ball
I current

e = dd − d error in pos
immediate costs tanh2 xe (−,−,−, 0)

µ (0, 0, 0, 0.002)
c 0.01

Actions 1 dimensional u voltage
Q-function neuronal 5-15-20-1
policy-function neuronal 4-15-1
Exploration ǫ-greedy ǫ 0.15



Magnetic Floating

• NFQCA training in max. 400 episodes with N= 160 (∆t = 0.004s)
Demo (training with exploration) (fast)

• After 90 episodes (<1min interaction)
Demo

• tracking control
Demo: tracking control

• tracking control possible
Demo: tracking control



Magnetic Floating
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Magnetic Floating
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Double cart pole

MOTOR

F

0
x

Encoder

Θ1

Θ2

l1

l2

x position of cart ∈ [-0.3, 0.3] [m]
ẋ speed of cart [m/s]
θ1 angle pole 1 ∈ [-0.25, 0.25] [rad]

θ̇1 angular velocity pole 1 [rad/s]
θ2 angle pole 2 ∈ [-0.25, 0.25] [rad]

θ̇2 angular velocity pole 2 [rad/s]
u actions (voltage) ∈ [-6, 6] [V]



Double cart pole

• max. 500 episodes Demo

• after 136 episodes balances forever
Demo: test trajectories (fast)

• Best NFQCA controller after 248 episodes
Demo: test trajectories (fast) , Demo: single trajectory (loop) (slomo)

• Best NFQ controller with discrete actions after 364 episodes
Demo: test trajectories



Further examples

• Aircraft Pitch : NFQCA Profil 1 NFQCA Profil 2 ; NFQ Profil 1 NFQ Profil 2

• Bus-Suspension : ohne Regelung NFQCA



Neuro Dribbling for a soccer robot

Task: ’Dribbling:’ Moving to a target direction
without loosing the ball.

state dim: 5 (rel. speed (x,y), rot. speed, angle
to target direction, ballposession)
actions: 4 (pairs of target speeds in forward and
sideward direction)
△t : 33 ms

• offline sampling: random sampling (100 episodes) - NFQ (100
iterations) - greedy sampling (100 episodes) - NFQ (100 iterations)

• standard set-point cost function

c(s, u) =

{

0 , if |θ − target| < 5o (’setpoint area’)
0.01 , else

Q(s, a) = 1, if ball is lost (failure)



Neuro Dribbling Results

• decent human interaction in two phases of data sampling of about
15 minutes each.

• two offline NFQ learning phases of about 3 hours each

• used for dribbling in Brainstormer’s World Champion Team
RoboCup 2007

• won Technical Challenge Award RoboCup 2007



Learning to steer a real car (2006)

• task: smooth track following

• research stay at S. Thrun’s lab, Stanford

• 6 dim. state: cross-track-error (cte) and
time derivative of error, speed of rear wheels,
heading error and yaw-rate matching, current
steering wheel angle

• actions: changes in steering wheel angle

• c(s, u) =

{

0 , if |cte| < 0.05m and u == 0
0.01 , else

Q(s, u) = 1, if |cte| > 0.5m (failure)

• embedded RL controller (parallel learning and
control)
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Neural steering wheel control - summary

• no prior knowledge

• learned directly in real car (4 passengers)

• alternative fall-back controller during learning phases

• failure free and reasonably smooth steering in less than 20 minutes
driving time

Video



RL in visual servoing

Task: Vision based closed loop control to grasp
objects in arbitrary position.
No kinematic/ dynamic model of the arm is
provided.
Camera mounted on hand.

states: joint pos and speed, object pos in
camera.
actions: small joint movements

• about 300 trials (episodes)

• standard set-point cost function

c(s, u) =

{

0 , if object is in gripper
0.01 , else

Q(s, a) = 1, if object is out of camera (failure)



CLS2 - closed loop simulation for learning controllers

Regeleinrichtung RegelstreckeStellgrößeFührungsgröße

Rückführung

StörgrößeStörgröße

Regelgröße

• open source

• many plants

• both simulated and real plants

• many controllers

• general modules: graphics, statistics, ...



CLSquare in ROS

• Goal: Solve highly dynamic control tasks with the PR2 using
Reinforcement Learning

– To achieve this, we need to embed a general RL framework into
the ROS architecture.

– Instead of implementing a complete RL framework inside ROS,
we choose to make cls2 compatible with it.

⇒The PR2 robot becomes just another plant (or MDP, respectively)
within the CLS2 framework (’action in, state out’).



Implementation - Scheme



Implementation - Node Description

Joint Controller:

• runs with up to 1000 Hz

• is plugged into the pr2 controller manager

• is implemented realtime safe

• can be exchanged online with other controllers

• can be configured to control different sets of joints

• publishes joint state information

Communication Node:

• handles the communication with cls2 via UDP using a custom
protocol

• receives actions from cls2 and sends them to the joint controller

• collects state and reward information and sends them to cls2



Implementation - Node Description

Reward Node:

• given state information, calculates the current reward and detects
terminal state

Additional State Information:

• collects additional data from the PR2’s sensors, e.g. visual
information



Implementation - Node Description

ROS Plant:

• handles the communication with ROS

• sends action and episode control commands to ROS

• receives state information and reward from ROS and routes them
to the RL Controller

RL Controller:

• the general cls2 controller class

• here we can plug in arbitrary learning algorithms



Ongoing work

• Learning on abstract states (Stephan Timmer)

• Multi-agent learning (Scheduling, Thomas Gabel)

• RL in computer games (Thomas Gabel)

• Vision-based RL (Deep neural networks, Sascha Lange)



Summary

• (Neural) Fitted Q Iteration: highly data efficient RL learning
method

• learning from scratch, model-free

• Multi-layer perceptrons are pretty robust, generalise well and can
deal with large amounts of data

• provide useful gradient information

• sampling of transition data very flexible: randomly, with different
policies, different time-scales ...
reuse of data possible

• direct application to real plants possible

• PR2: currently implementing a closed control loop in ROS, that
fits to our learning framework CLS2


