Package weka.filters.supervised.instance
Class SpreadSubsample
java.lang.Object
weka.filters.Filter
weka.filters.supervised.instance.SpreadSubsample
- All Implemented Interfaces:
Serializable,CapabilitiesHandler,CapabilitiesIgnorer,CommandlineRunnable,OptionHandler,Randomizable,RevisionHandler,WeightedAttributesHandler,SupervisedFilter
public class SpreadSubsample
extends Filter
implements SupervisedFilter, OptionHandler, Randomizable, WeightedAttributesHandler
Produces a random subsample of a dataset. The
original dataset must fit entirely in memory. This filter allows you to
specify the maximum "spread" between the rarest and most common class. For
example, you may specify that there be at most a 2:1 difference in class
frequencies. When used in batch mode, subsequent batches are NOT resampled.
Valid options are:
-S <num> Specify the random number seed (default 1)
-M <num> The maximum class distribution spread. 0 = no maximum spread, 1 = uniform distribution, 10 = allow at most a 10:1 ratio between the classes (default 0)
-W Adjust weights so that total weight per class is maintained. Individual instance weighting is not preserved. (default no weights adjustment
-X <num> The maximum count for any class value (default 0 = unlimited).
- Version:
- $Revision: 14534 $
- Author:
- Stuart Inglis (stuart@reeltwo.com)
- See Also:
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionReturns the tip text for this propertybooleanSignify that this batch of input to the filter is finished.Returns the tip text for this propertybooleanReturns true if instance weights will be adjusted to maintain total weight per class.Returns the Capabilities of this filter.doubleGets the value for the distribution spreaddoubleGets the value for the max countString[]Gets the current settings of the filter.intGets the random number seed.Returns the revision string.intgetSeed()Gets the seed for the random number generationsReturns a string describing this filterbooleanInput an instance for filtering.Returns an enumeration describing the available options.static voidMain method for testing this class.Returns the tip text for this propertyReturns the tip text for this propertyvoidsetAdjustWeights(boolean newAdjustWeights) Sets whether the instance weights will be adjusted to maintain total weight per class.voidsetDistributionSpread(double spread) Sets the value for the distribution spreadbooleansetInputFormat(Instances instanceInfo) Sets the format of the input instances.voidsetMaxCount(double maxcount) Sets the value for the max countvoidsetOptions(String[] options) Parses a given list of options.voidsetRandomSeed(int newSeed) Sets the random number seed.voidsetSeed(int seed) Set the seed for random number generation.Methods inherited from class weka.filters.Filter
batchFilterFile, debugTipText, doNotCheckCapabilitiesTipText, filterFile, getCapabilities, getCopyOfInputFormat, getDebug, getDoNotCheckCapabilities, getOutputFormat, isFirstBatchDone, isNewBatch, isOutputFormatDefined, makeCopies, makeCopy, mayRemoveInstanceAfterFirstBatchDone, numPendingOutput, output, outputPeek, postExecution, preExecution, run, runFilter, setDebug, setDoNotCheckCapabilities, toString, useFilter, wekaStaticWrapper
-
Constructor Details
-
SpreadSubsample
public SpreadSubsample()
-
-
Method Details
-
globalInfo
Returns a string describing this filter- Returns:
- a description of the filter suitable for displaying in the explorer/experimenter gui
-
adjustWeightsTipText
Returns the tip text for this property- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
getAdjustWeights
public boolean getAdjustWeights()Returns true if instance weights will be adjusted to maintain total weight per class.- Returns:
- true if instance weights will be adjusted to maintain total weight per class.
-
setAdjustWeights
public void setAdjustWeights(boolean newAdjustWeights) Sets whether the instance weights will be adjusted to maintain total weight per class.- Parameters:
newAdjustWeights- whether to adjust weights
-
listOptions
Returns an enumeration describing the available options.- Specified by:
listOptionsin interfaceOptionHandler- Overrides:
listOptionsin classFilter- Returns:
- an enumeration of all the available options.
-
setOptions
Parses a given list of options. Valid options are:-S <num> Specify the random number seed (default 1)
-M <num> The maximum class distribution spread. 0 = no maximum spread, 1 = uniform distribution, 10 = allow at most a 10:1 ratio between the classes (default 0)
-W Adjust weights so that total weight per class is maintained. Individual instance weighting is not preserved. (default no weights adjustment
-X <num> The maximum count for any class value (default 0 = unlimited).
- Specified by:
setOptionsin interfaceOptionHandler- Overrides:
setOptionsin classFilter- Parameters:
options- the list of options as an array of strings- Throws:
Exception- if an option is not supported
-
getOptions
Gets the current settings of the filter.- Specified by:
getOptionsin interfaceOptionHandler- Overrides:
getOptionsin classFilter- Returns:
- an array of strings suitable for passing to setOptions
-
distributionSpreadTipText
Returns the tip text for this property- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
setDistributionSpread
public void setDistributionSpread(double spread) Sets the value for the distribution spread- Parameters:
spread- the new distribution spread
-
getDistributionSpread
public double getDistributionSpread()Gets the value for the distribution spread- Returns:
- the distribution spread
-
maxCountTipText
Returns the tip text for this property- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
setMaxCount
public void setMaxCount(double maxcount) Sets the value for the max count- Parameters:
maxcount- the new max count
-
getMaxCount
public double getMaxCount()Gets the value for the max count- Returns:
- the max count
-
randomSeedTipText
Returns the tip text for this property- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
getRandomSeed
public int getRandomSeed()Gets the random number seed.- Returns:
- the random number seed.
-
setRandomSeed
public void setRandomSeed(int newSeed) Sets the random number seed.- Parameters:
newSeed- the new random number seed.
-
setSeed
Description copied from interface:RandomizableSet the seed for random number generation.- Specified by:
setSeedin interfaceRandomizable- Parameters:
seed- the seed
-
getSeed
Description copied from interface:RandomizableGets the seed for the random number generations- Specified by:
getSeedin interfaceRandomizable- Returns:
- the seed for the random number generation
-
getCapabilities
Returns the Capabilities of this filter.- Specified by:
getCapabilitiesin interfaceCapabilitiesHandler- Overrides:
getCapabilitiesin classFilter- Returns:
- the capabilities of this object
- See Also:
-
setInputFormat
Sets the format of the input instances.- Overrides:
setInputFormatin classFilter- Parameters:
instanceInfo- an Instances object containing the input instance structure (any instances contained in the object are ignored - only the structure is required).- Returns:
- true if the outputFormat may be collected immediately
- Throws:
UnassignedClassException- if no class attribute has been set.UnsupportedClassTypeException- if the class attribute is not nominal.Exception- if the inputFormat can't be set successfully
-
input
Input an instance for filtering. Filter requires all training instances be read before producing output.- Overrides:
inputin classFilter- Parameters:
instance- the input instance- Returns:
- true if the filtered instance may now be collected with output().
- Throws:
IllegalStateException- if no input structure has been defined
-
batchFinished
public boolean batchFinished()Signify that this batch of input to the filter is finished. If the filter requires all instances prior to filtering, output() may now be called to retrieve the filtered instances.- Overrides:
batchFinishedin classFilter- Returns:
- true if there are instances pending output
- Throws:
IllegalStateException- if no input structure has been defined
-
getRevision
Returns the revision string.- Specified by:
getRevisionin interfaceRevisionHandler- Overrides:
getRevisionin classFilter- Returns:
- the revision
-
main
Main method for testing this class.- Parameters:
argv- should contain arguments to the filter: use -h for help
-